Tuesday

Tuesday's programme at EVA 2021

All times are BST (UTC +1) 

 
TuesdayParallel Session 1Parallel Session 2Parallel Session 3
10.00-11.15IS Machine learning (theory, inc. tail-adapted loss functions, concentration inequalities) 
Organizer/chair: Clemencon, S.
IS Public health, epidemiology, life sciences and life lengths 
Organizer/chair: Thomas, M.
CS Climate extremes (II) 
Chair: de Fondeville, R.
 Joly, E. 
Robust estimation of matrices and the consequences in matrix completion
Mhalla, L. 
Discrete dependent extremes
Huser, R. 
Modelling and estimation of extreme Red Sea surface temperature hotspots
 Bertail, P. 
Concentration inequalities for NA random variables, applications to survey sampling
Cheysson, F. 
Evolution of groups at high risk of death from COVID-19 using hospital data
Choi, W. 
Marine heatwaves in Korean waters: seasonal and regional differences
 Lerasle, M. 
Robust statistical learning
Rootzén, R. 
Real-time prediction of severe influenza epidemics using multivariate generalized Pareto modelling
Bhattacharya, S. 
Extremes of the spatial impact of heat waves
   Castillo-Mateo, J. 
Nonparametric changepoint detection tests based on the breaking of records
11.15-11.30 Break
TuesdayParallel Session 1Parallel Session 2Parallel Session 3
11.30-13.00IS Extremes & random structures (branching and dynamics, geometry) 
Organizer/chair: Roy, P.
CS Spatial extremes (I) 
Chair: Padoan, S.
CS Regression techniques (I) 
Chair: Zhou, C.
 Dyszewski, P. 
K-regular self-similar fragmentation process
Zhong, P. 
Modelling and exact simulation of non-stationary temperature maxima with max-infinitely divisible processes
Bousebata, M. 
Extreme partial least-squares regression
 Yang, H. 
Scaling limits of branching random walks and branching stable processes
Hazra, A. 
A sparse Gaussian scale mixture process for modelling short-range extremal dependence and long-range independence
Stupfler, G. 
Extremile regression
 Ghosh, A. 
Extreme Values in negative curvature
Rønn-Nielsen, A. 
Extreme value theory for spatial random fields - with application to a Lévy-driven field
Trapin, L. 
Modelling panels of extremes
  Vandeskog, S. M. 
Modelling extreme sub-daily precipitation with the blended generalised extreme value distribution
Leng, X. 
Extreme conditional quantiles for panel data model with individual effects
13.00-14.00 Poster blitz
Mashabe, B., Unsupervised threshold selection in POT modelling: a comparative study
Barltrop, C., Estimating bivariate return curves for non-stationary processes
Silva Lomba, J., Mixed moment estimator for inference on space-time extremes
Krali, M., Estimating an extreme Bayesian network via scalings
Jurado, O. E., Assessing the skill of a max-stable process model for modeling extreme rainfall events for different seasons in Germany
Healy, D., Simulating spatially realistic extreme temperature events in Ireland.
Israelsson, J., A new class of estimators for residual dependence index and its application on tropical rainfall
Zeder, J., The value of regularisation and model robustness in the context of climate extremes
Vandeskog, S. M., Modelling extreme sub-daily precipitation with the blended generalized extreme value distribution
Philomène, L. G., Spatial clustering of heavy precipitation over Switzerland
 
14.00-16.00 Poster session
TuesdayParallel Session 1Parallel Session 2Parallel Session 3
16.00-17.15IS Causal inference 
Organizer/chair: Neslehova, J.
CS Bayesian extremes 
Chair: Shaby, B.
Best student paper (III) 
Chair: Fereira, A.
 Gnecco, N. 
Causal discovery in heavy-tailed models
Zhang, L. 
Spatial scale-aware tail dependence modelling for high-dimensional spatial extremes
Terefe, E. M. 
Extremal random forests
 Peters, J. 
Can causal discovery benefit from extreme values?
Rizzelli, S. 
Consistency of Bayesian and empirical Bayesian inference on multivariate max-stable distributions
Asenova, S. 
Extremes of Markov random fields on block graphs
 Papadogeorgou, G. 
Causal inference with spatio-temporal data
Ramirez, K. V. 
Bayesian semiparametric modelling of jointly heteroscedastic extremes
Jalalzai, H. 
Feature clustering for support identification in extreme regions
  Yadav, R. 
A flexible Bayesian framework for modelling extreme spatial threshold exceedances using product mixtures of random fields
Pasche, O. 
Causal modelling of heavy-tailed variables and confounders
17.15-17.30 Break
TuesdayParallel Session 1Parallel Session 2Parallel Session 3
17.30-18.45IS Multivariate extremes (sparsity, high-dimensional, copulas, anomaly detection) 
Organizer/chair: Sabourin, A
CS Applications of extremes (II) 
Chair: Castro, D.
CS Extremes of stochastic processes (I) 
Chair: Kulik, R.
 Engelke, S. 
Extremal graphical lasso and high-dimensional extremes
Pipiras, V. 
Multifidelity Monte Carlo estimation for extremes
Ji, L. 
Extrema of multi-dimensional Gaussian processes over random intervals
 Einmahl, J. 
Empirical tail copulas for functional data
Shaby, B. 
Modelling first arrival of migratory birds using a hierarchical max-infinitely divisible process
Krystecki, K. 
Two-dimensional ruin for Brownian motions with drift dependent on initial capital
 Nolan, J. 
Robust Sparse Reconstruction
Patel, L. 
Statistical learning of extreme spatio-temporal events with an application to global terror attacks
Otto, M. 
Poisson approximation in the Poisson hyperplane mosaic
  Wang, T. 
Reciprocity and large degree dependence in a preferential attachment model
Owada, T. 
Convergence of persistence diagram in the subcritical regime