Mathematical modelling of cancer invasion and metastatic spread Invasion and metastasis are two of the hallmarks of cancer and are intimately connected processes. Invasion, as the name suggests, involves cancer cells spreading out from the main cancerous mass into the surrounding tissue, through production and secretion of matrix degrading enzymes. Metastatic spread is the process whereby invasive cancer cells enter nearby blood vessels (or lymph vessels), are carried around the body in the main circulatory system and then succeed in escaping from the circulatory system at distant secondary sites where the growth of the cancer starts again. It is this metastatic spread that is responsible for around 90% of deaths from cancer. To shed light on the metastatic process, we present a mathematical modelling framework that captures for the first time the interconnected processes of invasion and metastatic spread of individual cancer cells in a spatially explicit manner—a multigrid, hybrid, individual-based approach. This article was published on 2025-10-17