1921-22.] The Faraday-Tube Theory of Electro-Magnetism.

XVI.—On the Faraday-Tube Theory of Hlectro-Magnetism. By
the late William Gordon Brown. Communicated by Dr C. G.
Kxorr, F.R.S., CGeneral Secretary, along with a Biographical Note
of the Author

{Reud Jannary 9, 1822.)

1. THE method of deseribing a field of force by means of lines or tubes of
induction, which originated with Faraday, was given a guantitative form
by Sir J. J. Thomson,* and further discussed by N. Campbell in his book
Modern Electrical Theory. Since Maxwell himself looked on his work
as a mathematical theory of Faraday’s lines of force, one is tempted to
examine the original physical theory for hints as to the modification of
the Maxwellian theory to suit certain modern reguirements.

What is atbempted in the present paper is a reconstruction of the
quantitative theory of Faraday tubes on a dynamical basis from the
minimum of hypotheses: partly to enable the electro-magnetic consequences
of altering the Principle of Action to be estimated, and partly to suggest
plausible directions for modification of the electro-magnetic relations them-
selves. 1t will incidentally be shown that the stress which may be
supposed to act in the electro-magnetic field requires certain modifications
if the theory of lines of force is adopted.

2. The first assumption required is as follows :— A tube of induction, or
Taraday tube, may be defined as a continuous line having certain physical
properties. Any tube may either be a closed curve, ov its ends be connected to
a positive and a negative electric particle respectively ; the positive direction
will then be from the positive to the negative particle. It would be super-
fluous at present to specify any further properties of the electric particles.

The tubes at any point may be divided into sets distinguished by each
set having a common direction and a common velocity of translation.

In what follows the vectorial notation of Heaviside is employed,t and

“ Recent Researches, chap. 1 ; Electricity and Matier, chap. 1.

t [Heaviside's vector notation is a modification of Hamiltow’s quaternion nctation, the
main difference being that the guaternion product of two veelors AB iz not used in
Hamilton’s sense but is used to mean the scalar of the compleie product—that is, Heaviside's
AB is equivalent to Hamiltorw’s - SAB, and may be defined geometricaily as equal to
AB cos 6, where A, B are the lengths of A, B, and 6 the angle between thent  As in other
non-associative vector algebras, the square of a vector is equal to the square of its length ;
in quaternions A= — A2 The notation introdnced by Gordon Drown in equations (9),
{10, ete., has heen suggested by others but genera]}ydiscarded. Dinrali-Forti and Marcelongo,
however, make it a feature of their system of vector analysis. Asa nolation it is misleading ;
& an operator it is inferior to the quaternion v.—C. G. ]
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Let the density of the

electrical quantibies are measured in rational units.
epresented by

tubes of the mth set and their direction, at any point, be »
the magnitude and divection of the vector d,,; then the number of tubes
of that set passing through unit area normal to the unit vector N will

be Nd,,.

Tt
D=¥d,, . - - - - B

tho summation including all the sebs present at the point: then the tobal

of all sets passing through the same unit area is
¥Nd,, =ND,

where tubes passing through the area in the direction of N are reckoned

positive, and the al gebraic total is intended.  Thus D represents vectorially
the total Alux of bubes; it is to be ‘dentified with the D of Heaviside, and,
the question of units, with the (/. g, /) of Maxwell.

except for
y velocity of the tubes of the mth set at the point

Let q,, be the (vector

in question, and let
DR

H= E.vqmdm . . ' . ' ' (21

The quantity thus defined will be shown to have the properties of

magnetic force.

This completes the geometrical and kinematic specification of the
It is nobt difficult to see that if we define the
number of tubes leaving it, in the
ticle is outwards, then

properties of the tubes.

charge of an electric particle as the

sense that the direction of the tubes ab a positive par
the density of electric charge will be given by

p=divD @)

[f we take the earl of (2) and expand the right member fully. intex-

cinematically, we obtain the equation
curl H =D + 2, div d,,
=D+up, . . : . TS

preting the terms }

ate of change of D at fiwed, povnt, and W 18 the

where D is the time v
¢ the electric particles caleulated so as to

mean velocity of translation o
make up the convection current.

3. The second assumption made is dynamical. Let us write

D =
R (5)
B=pH, . - . - - - ®

where w and K ave constants, and B and B are new vectors, the electric

intensity and magnetic induction.
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Then we assume that the volume densitics of kinetic and potential
energy ave given by

U=4ED . ..
T=lHB ... (8

The meaning attached to the above quantities is that if we write

L#~//}(r—t‘yha
where the volume integral is extended throushout all space, then L may
be used as the Lagrangian function in eguations of motion of the usual
form. For the sake of brevity, vectorial generval coordinates will be
employed.  In order to preserve the form of the equation

@ oL Ol
dt dG g

it is sufficient to write, in the case of a vector coordinate r (equivalent
to the three scalar coordinates o, vy, 2)

b

This notation in vectorial analysis is of course not generally applicable
but is eonvenient for the purposes of the present paper. The general
results of differentiation which will be required are

fas —a ... .0
o$

ﬁsg;s:?,ws, . ) . . . {115
s ‘

where 8 is any vector variable, a is a constant vector, and ¢ is a constant
self-conjugate linear and veetor operator,

4. To define the general coordinates, let all tubes at a given moment
be divided into small unit lengths; and let r be the vector from a fixed
origin to the centre of one such unit segment. which forms part of a tube

of the mnth set. then the Lagrangian equation corresponding to v will be
£ ol 8l
dtogfoor

=0, ..

Now, when a unit length of a tube of the mth set is added to, or
removed from, an element of volwme, the increase or decrease of the whole
Lagrangian function due to this element will be

51, .
SL= 97" 3d,,
6ddm

= '%dm(E -+ VQmB) : : : . : (13)
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for
0 ir o U L[V a0 - 4D K]
ad,p Oy R
= 58.({*" LE > LF( - dm\'ququsds) - }(zdm)“}/([{ﬂ
= **(E‘JE‘ \vqu), : ' ' . : . . (11)

where the smmmations inelude all values of the suflixes n, s the differ-
entiation of terms such as (—d,,Vq,,Vq,d,) being performed by means
of (11), sinee (—Vq,,Va,,) is a self-conjugate operator; and that of cross-
products, such as -—

(=43 Y, Vads) by means of (10), writing &= — V@, Vs -

Thus, if in the figure the unit segment is removed from the position
AD (at which (14) has the value —(E+Vq,B) to the parallel position BC
(at which (14) has the value —(1+4rv.) (B+Vq,B), AB=¢r), then the
total increase in L is given by

SL= —ory . 80, (E+Vq,B).

It will now be convenient to suppose (as we may without loss of
generality) that the ith set consists of but one tube, so that 6d,, = d,, and
is in fact a unit vector,

Then

B L= = dry . dpn(B+Va,B). . . {15
and in applying the axial differentiator Jry we must remember that
neither d,, nor q,, as they occur explicitly are to be considered variable.

But to preserve the continuity of the tube we require to introduce the
segments AR, CD, as shown in the figure, so that, again applying (13, we
have the change of L due to this cause.

S, L=d,y . B+ Vq,B), . . . . {16)

in which g, is variable (but not d,,).
Hence

SL = 8.L + 8,1 = 5t{dyyy « (B + V,uB) - v . LB + Ve, Bj
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g, varying in the first term only, and d,, not at all, and finally

0]

L
r

o

= dmv . (E + -quB) -7 dm(E + Vq'mB) . . ' (17)

(5%

with the same convention.

. oL .
In calculating the momentum term 5 we have F=q,. Then by the

s

method employed above in caleulating (14), since T is symmetrical in
4, and d,, ,

A;?L[‘ = .V-(I?HB . . . . . * (} E))

s . . oL . . ‘ :
This will be the vaiue of = when d,, is a unit length of tube, but in

performing the complete differentiation to time in (7) we must remember
that any lengbh of tubz will in general be continually varying in direction
and magnitude. It is ciear that

1)
((""' dm = dmv L PPN . : : . ' (1 9)

since the rate of change of a segment of a st raight line, as A1) in the figure,
will be the relative velocity of its ends (vectorially); while, of course, if Q..
expresses the velocity of any point of the tube, as A, the velocity at D
will be (14+ADT .1, . where AT is the vector element.

Thus

i EFL = “(“Z Vde
S T
= Tr(dmv N (Hv)t)B -+ Vdmg =+ Vdm(QmV . B) ) - . . (20)

where B is the rate of change of B at a fixed point coincident with the
moving centre of the segment, 4,,v . B belng of course the term in the rate
of change due to morion of the segment with velocity g,,.

Equation (12} is therefore by (17) and (20),

\»(d”‘v ’ qm)B + Vde B \Ydm(QMV : B)
- dnav . (E":“ quB)+v . dm(E%‘- .\...qu) zz ) , - , . (2!)

4, and 9., being eonstant in the last term, and v operating forwards only.
In carrving our the simplifying transformations we may drop for the
moment the suffix .

Nl . .
From the Jast two terms we have, in part,

—dy . E+4+v¢.dE=+VIVgE
= Vd erl E . : - (22)
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From the remainder we find

VdB 4+ Vidy . )B-+ Vd(ay . B) -dv . VaB+ v, . dVaB,
=VAB+V(dy . )B+V . d{qy . B)
~V{dy.qB- V. cidy. B)+v, . dVaB,
=VdB+ V. d{qy . B)~ V. qdv.B)
-~V . digy B)+V.qdy.B)+Vdg. vB
=VdB-4+ Vdg div B, . . . . . . ) (29

where the suffix restricts the action of ¥ to the vector carrying the same
suffix.
Equation (21) then reduces to

Vd,,(curl E4+B+divB). . : . C(24)

Now d,, will have different values according to the different directions of

the various sets of tubes; hence (unless all the tubes ave parallel}) we
may write )

curt E4- B4+, divB=0 . . . . . (2D)

From this, since q,, is the velocity of any set of tubes, unless all the

sets have a common veloeity, we must have

divB=0, . . . . . . (28)
and thus
~curl E=B . . 4 . . . {2T)

We have now shown that the first four laws of the ordinary theory of
electro-magnetism ave consequences of the assumptions which have been
made. [t may be observed that wheveas, in the proof of the first two laws
(3) and (4), no departure of importance is made from the method of Recent
Researches, the proof just given of the laws (206) and (27) is quite different
from that adopted in that work. This is rendered necessary hy the
purpose of the present paper, which is not to deduce the properties of the
tubes from the known laws of electro-magnetism, but to show that, given
¢he tubes with the (essential) properties assigned to them by Sir J. J.
Thomson, the laws of electro-magnetism follow.,

5. Tt remains to discuss the forces acting on the electric parbicies.
Referring to the figure on p. 228, let B be a particle at the end of the
tube B, €, D, Then the change in L due to the displacement of the end
of the tube from B to A (introducing a new segment BA), is by (13)

SL-dr(E+Va,B), . . . . . (28
4ince

8,y e AL = =31,
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B being the positive end of the tube, and thus equivalent to a positive
unit of electricity. Hence the force acting per unil charge moving with
velocity g is
F=E+VqB,. . . . . (29
the Ififth Law of Electro-magnetism.

6. The definite dynamical assumptions of this theory enable us Lo
examine very thoroughly such questions as the stress in the field and the
mechanism of radiation.

Heaviside * has given a general discussion of the problem of stresses
from which it is not difficult to deduce the following general result :—

Let ¢, be the operator of Maxwell's stress,

y,=E.D+H.B- }{ED+HB), . : . . {30)
where any vector operand forms with D and B scalar products in the fivst
and second terms.  When this operand is a unit vector N, 4, N is the stress
on the plane perpendicular to N.

Let ¢ be the stress derived from i, by putting for B, E4+VgB. and
for H, H -~ VgD, namely

y=y,+VqB.D-VgD.B-}(VqB)D +}(VeD)B
=y, +VqB.D+VDq.B-DVqB
CysVDB.G . ..
mere vector transformation.
Then if N is unit normal to a surface moving with a velocity ¢ at any
point, N is the flux of momentum through the surface in the direction
opposite to the positive direction of N, per unit surface per unit time.

To see that this is true we have only to apply the theorem of
divergence; in the first place we note that since
;;:,f‘rdf”B" L ay

summing for all value of m we have VDB equal to the momentum per unit

<

by

o

volume, DBut

G ‘
oo = e YV DB . . . . . 39
L2 EY, : (] )

a result easily deduced (Heaviside, loc. ety from the eivcuital laws, and
usually expressed in words by stating that Maxwell’'s stress gives rise to
a translational force per unit volume equal to the rate of change at a fixed
point of the momentum per unit volume (the absence of electrification
being assumed). We are thus entitied to say that ,N is the flux of
momentum per unit area of a fixed surface. Now it is clear that VDB . qN

% Rlectrical Pupers, vol. 1i, pp. 821 ¢f seq. ; also Phil. Trans., A, 1892.
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is the Aux per unit area due to the motion of the surface with velocity g,
E : Hence i is the geneval operator giving the fux of momentum. The

: squation of rate of change of momentum per unit volume at a point whose
i velocity is 18
| Yy = gvaB + 9. VDB

#(%VDB-i-qv.DB+VDB.(1ivq, S (33

the first two terms giving the rate of change of density of momentum ab
the moving point, and the last term the rate of change due to expansion at
the rate div q.

This flux of momentum i is partly due to convection, and partly to be
aseribed to a stress. It is interesting to note that if all the tubes were of
one set, we could determine the stress by simply putting g equal to this

o veloeity. We should then have H= VgD, and the stress would be
¢=(E+VgB). D—-L(E+ VqB)D

; =F.D—FD

. ~F.D+,HB-ED) . . . . . . {(34)

> In general the stress operator will be obtained by subtracting from i,
the operator — X(Vd,B.qu) which gives the convective flux of momentum
. relative to a fixed point; thus the stress is
1
‘75 W+ \‘(Vd B. Qi) ' . ' : ' (35)’
=HE. D+ H B- IED %HB + 2-\‘-{1”1}3 dm Aqudm .B

-** VQ?n m)B
_ ~E. D+H.B-4ED-1HB+3Vq,B.d,~H. B+HB
¢ ~SHE+Vq,B).d,) -3ED+4HB . . . . .. (30)

From (35) we see that the stress coincides with Maxwell's stress when
there is no conveesion of momentum relative to the (so-called) fixed
reference frame; and from (35) that it consists in general of a quasi-
: tension equal to E+Vq,B per tube of the inth set together with a hydro-
static pressure J(BD—HB). The torque per unit volume is geen to be

. $ ¢ =85= - IV(E-+Vq,B)d,
o = +3Vd,,Vq,.B
2 — 3V, Vd,,B - SV(Vq,d,)B
o e ESVa,VAB, . . .. (38)

_ the last expression being the rate of change of moment of momentum
- about a fixed point due to component of velocity perpendicular to the
momentum, familiar in the hydrodynamics of the motion of bodies in

a fiaid,
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7. The flux of energy also consists of two parts: the conveetive flux
due to the motion of the tubes, and the flux due to the activity of the
stress. To find the convective flux we require to localise the energy
in & manner rather difficult to justify. The whole energy per unit volume

may be writben
iNB-+-1ED
= 32 (E - Vg, B) . . . . . {31)
Then we may suppose the part d,(E-Vq,B) of the energy to be
moving with velocity q,,, and so on. The total convection of energy will
therefore he
124, (BE-Vq,B). 4 - . . . . (38)

To find the stress-activity flux from (35), consider first the term
(B+Vq,B). d,; the appropriate velocity is clearly q,,.and the flux (by
Heaviside's method)

- quE+V,B) . dy=-q,E. d,.
Again, we may write the second term
~ $ED + JHB = ~ }{(Xd,)E ~ (ZVq,d,,)B}
= J_’}:‘dm(E + quB),
and it seems permissible to write the activity flux due to the term
~3d,.(BE+Vq,B) as +%q, .4, (B+Vq,B). Hence the total activity flux
will he
- Z{q,E . d, - 3, (E+ Vg, B)}, . . . . (39)
and the whole flux, adding (38) and (39),
W L5 (B = Vi,B) . O, —~ 2q,E . 4, + $2d,,(E + Vg, B)q,
= (U E . G~ 0B d,,)
= VEZVq,d,,
=VEH. . . ..

8. Since we have shown that this theory leads to the ordinary
equations of the electro-magnetic fleld, it is unnecessary to give a separate
proof of the uniform propagation of disturbances with veloeity 1/ SJuKo Tt
is perhaps as well, however, to examine shortly the mechanism of pro-
pagation, particularly since the mental pieture of electro-magnetic radiation
afforded by the theory is in many vespects very satisiactory.

N. Campbell gives a short discussion of the question, and shows that a
tube at rest may be compared to a flexible cord of linear density uD) under
a tension D/K; the square of the velocity of propagation of transverse
disturbances being then 1/uK by the elementary dynamics of cords, To
extend this result to the case of a tube having a general velocity v per-
pendicular to its own divection, we have only to remember that, by
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equation (35) above, the stress to which the restoring foree is due will
now be the quasi-tension B+ VB, where q is the velocity of the tubes, of
vhich we shall suppose that only (ne set need be taken info account ; and
with this last assumption we may drop the suflix m and so write

K

The d component of B+ VaD is the only effective part of the stress, and
its magnitude is given by

(E+ VB, = ( ; + ,Nq\-"qd)dl ,
AN
where d, is the unit vector parallel to d, or d=dd,. This equals

21+ 4Kd, VaVad)

d - N
:K{ = pK(Vd )%}
LA 11
wl_{\i PRI )

where 2K =1.

The linear density will remain ud, so that the velocity of propagation
along the tube will be c?—»% Since the tube itself is in motion
with velocity » in a perpendicular direction, the propagation of the
disturbance in space will he with velocity ¢ in a direction making an

angle sin~1 % with the tube. When »=¢ the disturbance will not be pro-

pagated at all along the tube, which will lie in the wave-front: and the
traction (B uVgVgD) will vanish.

9. To take into account a general velocity of the tube in the direction
of its length, let us restrict ourselves to plane-polarised radiation. We
shall take the w-axis in the direction of propagation, and the y-axis in that
of the disturbance. Since we are dealing only with transverse vibrations,
the velocity of the tubes in the direction of the ray will he constant from
point to point along a tube. Let w be this z-component of veloeity. Also
let (2, y) he the coordinates of a point on some particular tube at time ¢,
so that y is a function of » and ¢ Then the whole y-component of velocity
of the point will be

It is obvious that the shearing motion perpendicular to the xz-axis of
the tubes in their vibration will not affect the number of tubes per unit
nrea. passing through a plane normal to the z-axis. Thus the quantity
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Also, if d, is the y-component, we shall have

And thus

(Ly =

A% = d,* +

a2 (2]

The momentum per unit length along the tube is

Vd,B = pVd, Vod
u(q d—d. qd)

Multiply this by

..LJ
the z-axis, and, taking the y-component, we have
,ff{(g_fmgif)dm(z 2 M ity (O 40
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The force to be equated to this arises from the quasi-tension

E-VgB- }d, + VgV
K

I

of which the y-component is
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dy, the z-component of electric displacement, will be constant at a point.

(43

to find the value appropriate o unit length along

(44)

Hence the rate of change of momentum in the y-direction per unit

(45)
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Differentiating with respect to 2 we have the force per unit length

1 a Y \ﬁU *i N
o, R . \ , . .7
LK()(- i (47)

e Equating therefore expressions (45) and (47) and dividing by i, we have

5 - L1 alj"/ s UL &;0! e &’ Y

B Pl ™ piot T e

i or

. 2 2,

oy _ 20 R e ),
i ; a/‘é Gue?

‘< exhibiting the uniform propagation with velocity ¢ independent of the

general motion of the tube.
The relation between the electro-magnetic disturbance and the displace-

W

Y ment y of the tube is easily seen to be given by

. d aJ

- K m-r ”1 . . . . . (49

‘. v K? (49)

s H,= -,

. ; at v

o S Y 10
'LL(;

! But while in plane-polarised radiation the displacement of the tube
_ from its normal position is thus perpendicular to the plane of polarisation,
P in circularly polarised rays it is easy to see that the reverse s the case.
" 10. The intention in presenting the theory of Faraday tubes in the
" present form was to suggest possibilities of modification whieh might
T explain various phenomena of which no entirely satisfactory electrical
i explanation has been given so far
i In making attempts of this kind we wmay, for instance, take advantage
in various ways of the fact that the electric displacement has been con-
siderad as a mean value taken over a small, but not infinitesimal, ares
. From this point of view the Maxwellian theory is microscopical, and a
more microscopical theory may be what is vequired in various regions of

e modern physics.

) Again, the present theory rests on the localisation of electric and
' " magnetic energy as functions of D and H, and on the derivation from
: these of equations of motion. Hence it would he comparatively simple
, to estimate the effects either of a modified distribution of energy, or of
. substituting any different hypothesis for the principle of action.

" Lastly, quite a variety of hypotheses are possible as to the exact nature

of the electric particles.
It will be observed that in deseribing the propertvies of the tubes
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of force we have so far asswned that two oppositely directed tubes at
the same point exactly cancel each other in their effects, if they are
moving with the same velocity. Now, just as the electrical theory of
watter explains all the phenomena of neutral bodies as due to the exish-
ence of the equal mixture of positive and negative electricity, which on
the two-fluid theory was supposed to have no recognisable physical pro-
perties, so on the lines of force theory we may perhaps speculate with
advantage on the possibility of explaining by means of properties of equal
mixtures of oppositely directed tubes the phenomenon of gravitation,
which seems for many reasons to be on a different level from the ordinary
electrical phenomena. ILet us consider the potential energy of such a
mixture of tubes. So long as we choose an element of area large enough
to include many tubes, the density of energy {ED must always vanish ;
but as we take smaller and smaller elements of area, there will be an
increasing probability of the number of tubes passing through it iu one
direction being not quite equal to the number passing through it in the
opposite direction: in other words, what to ordinary microscopic electrical
measurements is a uniform absence of electric displacement may consist
of alternate regions of opposite displacement so small that only the mean
field of a considerable number of regions is measured. Such a field would
have positive potential energy: but since the more closely the tubes are
packed, the smaller is the element of arves we can take without consider-
ing this effect, it seems reasonable to suppose that the effect will hecome
smaller the more numerous are the tubes of either sign.  Not Lmprobably
& mathematical form might be given to this hypothesis which would
explain and locate the energy of gravitation. Tet de,, —de,; de,, —de,,
be pairs of opposite charges 7y, 7y the (small) distances apart of the
components of each pair: and R the distance between the pairs. Then if
the hypothesis could be so formulated that the potential energy of the
system would include a term of the form

where y is a positive counstant, the law of gravitation would be completely
satistied, and gravitational mass would be identified exactly with electro-
magnetic mass; for

de,*

1

is proportional to the element of electro-magnetic mass due to two elements
of charge de,, —de, .

. . m .

E A

B o TU SRR
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This last question is of some interest in the theory of atomic shructure ;
a number of writers have laid stress on the importance of mutual electro-
magnetic mass, and in particular Harking and K. D, Wilson * have used
this phenomenon to explain the departure of atomic weights from whole
numbers. [t appears, however, thay such an explanation could alone he
valid if mutual mass were ponderable.

12. The theory of Faraday tubes might possibly he emploved with
advantage in other investigations connected with atom theory. SirJ. J.
Thomson + has made several suggestions of this nature; his conception of
the electron as possibly simply the end of a single Faraday tube would of
course have very important consequences if adhered to in any theory of
atomic structure.

Again, if we suppose that electrons and positive nuclei have the property
of excluding the tubes of other electrons and nuclei, the attractions between
particles of opposite sign would become a repulsion at very small distances.
Or we may suppose that some or all of the tubes of an electron in an atom
simply end at a nuelens, instead of spreading equally outwards in all
divections; and different states of an atom, with different periods of
vibration, might arise according to the nwmber of tubes so connected.
Suggestions have also been made as to the application of the theory in
connection with a possible diserete structure in racdiation. i

JONCLUSION.

13. It has been shown that the general equation of the Maxwell-Lorentz-
Heaviside theory of electro-magnetism ean he dervived as mucroscopic con-
sequences of & simple dynamical theory of Faraday tubes.

This theory also gives explicit and non-contradictory expression to the
idens of electro-magnetic stress, momentum, and flux of energy, and an
electro-niechanical picture of vadiation explaining the law of uniform pro-
pagation in spite of the motion of the source,

A number of suggestions are made as to applieations to vhe theory of
gravitation and other problems.
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