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Overview, Parametrix?

A parametrix is an approximation to a fundamental solution
of a PDE (as Wikipedia says) by an easier one (sometimes it
is a Gaussian kernel).

We may understand it as an approximation of an option price
in a general diffusion environment by a Black-Scholes one. (A.
Pascucci, ...)

In the latter, it is known that a perfect static replication of a
barrier option is possible. (P. Carr,...)

| will introduce a parametrix of barrier type options in a
general diffusion environment by the static hedge in BS.
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Timing Risk?

e Timing risk is a risk associated with a payment time.

o Barrier options, defaultable bonds, or American options have
a timing risk.

e European claims do not have any timing risk since the
payment occurs only at the prescribed time.
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(Semi-) Static Hedge?

e We do not want to take a position with a timing risk. We
rather want to exchange the position to the one without a
timing risk.

e "“Without a timing risk” means a portfolio composed only of

underlyings and European type options. We call such an
exchange technique semi-static hedge.



Static Hedge of a knock out option [under
BS]

It has been widely known since the paper by P. Carr and J. Bowie
(1994) that under Black-Scholes assumptions, simple Barrier
options can be hedged by a static position of two options.
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Static Hedge of a knock IN option under
BS

When the option to be hedged is a call option knocked in when the
underlying hits a boundary, it can be hedged by

e Start with long position of a put.

e When the boundary is hit, the value of put option coincides
(by the BS assumption) with that of call option and so we can
exchange them with no extra cost.

o If the boundary is never hit until the maturity, both the
knock-in option and the put option at hand are worth zero.



Static Hedge of the simplest timing risk

P. Carr and J. Picron (1999), under a Black-Scholes environment,
tried to apply the semi-static hedging formula of barrier options to
hedge a constant payment at a stopping time (which actually is a
hitting time).
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Static Hedge of the simplest timing risk

e P. Carr and J. Picron found that an integration of the
semi-static hedging formula for barrier options provides a
semi-static hedge of the timing risk of constant payment.

e Under Black-Scholes economy, the integral of the semi-static
hedging formula of barrier options of Bowie and Carr type
provides a perfect static hedge of the timing risk.

e The integral (with respect to maturities) implies that the
static hedging portfolio consists of (infinitesimal amount of)
options with different (continuum of) maturities, which should
be discretized in practice.
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Iteration of Static Hedges

In a general diffusion model, the static hedge of B-S of barrier
options cause an error at the knock-out/in time.

The error part is also a timing risk, therefore a static hedge of
the error (the timing risk) is provided by an integral of the
barrier option formula.

Again the barrier option in the integral is statically hedged
with error. The error which is again a timing risk, etc ...

This procedure gives a (Taylor-like) series expansion of
semi-static hedge of a timing risk.

This is our Parametrix.
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We will work on a filtered probabilty space (2, F, P, {F¢}), and
...etc.
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Carr and Bowie's static hedge

Let X be an adapted process, and 7 = inf{t : X; € D}, where

D c RY is a region.

Definition

Let T > 0 be fixed. Let © be an F7-measurable random variable.

Another Fr-measurable random variable ©’ is called in (abstract)
Put-Call Symmetry‘ of © with respect to (X, D) if

1<} E[@Lixepy | Fr] = 117« 1} E[O 1 x¢ D} | Fr]- (1)

If it is the case, the knock option whose pay-off at maturity T is
©lixepyl{r>T} is hedged by long of ©1;xcp) and short of
©'11xgpy of non-knock out options since...
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Carr and Bowie's static hedge

If X = exp(cB + rt — 0?t/2), a Geometric Brownian motion,
e A put option (K — X7)4 is in put-call symmetry of call option
(X7 — K)+ with respect to the region x > K when r = 0.

2r
e More generally, (X—KT)I_cT2 f(%) is in put-call symmetry of
fF(X1).
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We are interested in rewriting
E[e™ "] = the value of the simplest timing risk.

We have that
Ele "] = /000 e "P(r € dt)
=[e"P(r < t)|° + r/oOO e ""P(r < t)dt
= r/ooo e ""P(r < t)dt
_ r/ooo e (1~ E[lys )t

1—2r

o0 X
=1 [ e GO i e
0



Carr and Picron’s static hedge

In short,

E[fe~""] = r/ooo e (1 — E[liroqy])dt

oo Xe1_2r
- r/ e "E[(1+ (?t)l = )ix<ky | Frldt.
0



Carr and Picron’s static hedge

In short,

E[fe~""] = r/ooo e (1 — E[liroqy])dt

Xt

o0 2
N r/o e "E[(1+ (?)1 = )ix<ky | Frldt.

Note that

e The timing risk is decomposed into the integral of the digital
knock-in options with exercise price K and maturity
t € (0,00) with the volume rdt.



Carr and Picron’s static hedge

In short,

E[fe~""] = r/ooo e (1 — E[liroqy])dt

Xt

o0 2
N r/o e "E[(1+ (?)1 = )ix<ky | Frldt.

Note that

e The timing risk is decomposed into the integral of the digital
knock-in options with exercise price K and maturity
t € (0,00) with the volume rdt.

e With a put-call symmetry, the knock-in option is rewritten as
options without timing risk.
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Let us consider the static hedge a knock-out option with pay-off ©
without put-call symmetry.
The hedge is:

e buys a European option with pay-off ©1;x, ¢py,
e sells a European option with pay-off ©'1;x, ¢py.
The value of the portfolio at time t is :

efr(T*t)E[el{XTeD} — @/1{X7—¢D} ‘-Ft]

Hedging Error

Err, .= —e_'(T_t)E[@1{7>T}|]:t]
+ e_r(T_t)E[el{XreD} — g0yl i
= e*r(T*t)E[l{rgT} (O1ixreny — ©1ixrepy) 172l

Put-Call Symmetry = Err, =0
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Hedging error as a timing risk

The error is in fact realized at the time of knock-out/in. In that
sense, it is with a timing risk.

From now on | will explain why and how the error is represented as
an integral of knock-in options, just as Carr-Picron’s, when

© = f(X71), and © = (7f)(X%) is in put-call symmetry of f(X7})
with respect to another diffusion process X'.

As announced, the Paramatrix is a key ingredient.
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Parametrix

Let p: and g: be transition densities (assuming they exist) of
process Y and Y’ respectively. We consider a “parametrix” of g;
by p: using the following relation:

Lemma
It holds that

qe(x, y) — pe(x,y)

t
:/ ds/ dz qs(x,z)(L; — L)) pt—s(z,y)
0 Rd

where L = L and L' = L denote the infinitesimal generator of Y
and Y', respectively, acting on the variable x.



Parametrix, proof of the lemma
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(Proof) We have that

as{qs(x7z)pt—s(za}/)} = 85qs(x,z)pt_5(2,y) - qs(X7Z)8SQt—s(Xyz)
= (L395)(x, 2)pt—s(2, ) — Gs(x, 2)(L;pt—s)(2, ¥),

where L* denotes the adjoint operator of L.
By integrating the equation, we obtain the RHS of the lemma;

Ilm/ 0s{qs(x, 2)pt—s(z,y)}ds

=l / ds / dz{(L5qs) (%, 2)pe—s(2,¥) — @s(x, 2)(LLpe—s)(2. )}
:/0 ds/dz qs(x,2)(Lz — LY)pe—s(z,y).



Parametrix, proof of the lemma

On the other hand, since

|in8/q5(X,Z)Pts(Z>Y) dz = pi(x, )

s}
and

Iim/qs(x, z)pt—s(z,y) dz = qi(x,y),

sTt

we obtain the LHS;
t—e
i [ 0l 2)pe-e(z. )} o5 = aulx.y) — pilxy).

g.e.d.



Expression of the Error

Now we are back in the specific situation where Y = X and
Y’ = X', etc. We put, for y € D,

ho(t,z,y) := (L — L})pe(z2, y),

and
h(t,z;y) = ho(t,z,y) — 7 ho(t, z,y),

where 7j, is the adjoint of 7 acting on y.



Expression of the Error

Now we are back in the specific situation where Y = X and
Y’ = X', etc. We put, for y € D,

ho(t,z,y) := (L — L})pe(z2, y),

and
h(t,z;y) = ho(t,z,y) — 7 ho(t, z,y),

where 7j, is the adjoint of 7 acting on y. Define a one-parameter

family of integral operators {S(t)} by

Stf(x)—/Dh(t,x,y)f(y)dy, t>0.



Expression of the Error

Then, we have the following

Theorem

The error is equal to the value of the integral of knock-in options
with pay-off St_sf(Xs)ds;

i
Erre = e (T-9F] / 1<) S7_F(Xe) ds| 7]
t



Expression of the Error, proof of the
theorem

(Proof) Observe that

Erry = e (T YE[L < {f(XT)L(xyeny — TF(XT)1xr¢0) }F2]
= e T OE e E{f(XT)1xrepy — 7F (XT)1xr¢0y HFA] I FE].

Thanks to the optional sampling theorem, the expectation
conditioned by F; turns into

/f(y)qr_T(XT,y)dy—/ 7f(y)ar—r(Xr,y) dy
D c

on the set {7 < T}.



Expression of the Error, proof of the
theorem

By applying the lemma (of parametrix), we have
/D F(y)ar—-(Xs,y)dy = /D f(y)pr—r(Xr,y) dy

;
+/ ds/ dz qS_T(XT,z)/ ho(T —s,z,y)f(y)dy,
T ]Rd D



Expression of the Error, proof of the
theorem

which is also valid for 7f;

/Cﬂf(y)qTT(XT,y) dy—/

D ﬂ-f(y)prT(XTﬂ Y) dy

)
N / ds / dz go (X 2) / ho(T — 5.2, y)rf(y) dy.
T Rd De



Expression of the Error, proof of the
theorem

which is also valid for 7 f:

/ Tf(y)qr—r(Xr,y) dy = /Cﬂf( )PT—-(Xr,y) dy

/ ds/ dz qs_ TXT,Z)/ ho(T —s,z,y)nf(y)dy.
DC

Since 7f is in pcs of £ w.r.t. p;, we know that

/cﬂf(y)pT_T(XT,y) dy:/Df(y)pr_T(XT,y) dy.



Expression of the Error, proof of the

theorem
Now we see that the expectation conditioned by F:

/f(y)qr_T(XT,y)dy—/ 7f(y)qT—r(Xr,y) dy
D

c

is equal to

T
/ ds/ dz qs—(X;, 2)
T Rd

. {/D ho(T —s,2,y)f(y)dy — /c PolT = .2, y)mf(y) dy}

T
:/ ds/ dz qs—+(X;, z)
Rd

/{ho —s,z,y) —mpho(T —s,2,y)} f(y) dy

:/ dS/ dz qsff(XTvz)ST—Sf(z)‘
T Rd



Expression of the Error, proof of the
theorem

Noting that
|, d2 @uerl(Xe,2)Sr-oF(2) = Ell ) ST—<FOG)I ],
R

we have
-
Erry = er(Tt)E[l{rgT}/ E[l{TSS}ST—sf(XSNFT] ds|F%]

T
— e—’(T_t)/ E[I{TSS}ST—sf(XS)’}—f] ds.
t



Second Order Static Hedge

The formula of the previous theorem

-
Erre = e (779 / E[ST-sf(Xs) = 125y ST-sf(X5)| Fe] s,

t
claims that the Err; can be understood as a timing risk. We set

ng(x) := g(x)lixepy — 78(x)1(xgD}-

Then Err; is hedged by a portfolio composed of options with
pay-off

(1 = m)ST-sf(Xs) = {ST-sf(Xs) + 7ST—F(Xs)} L xD}

and the volume “e~"(T=5)ds".
Note that the value at time t of the portfolio is given by

.
er(Tt)E[/ (1 —m)St—sf (Xs)ds| Fe]ds.
t



Second Order Static Hedge

The hedge error coincides with the one in the corresponding
knock-out case. So the error of the static hedge for the option
maturing s is given by

Err§ ds := e T DE[1y, cymST_of (Xs)|Fe]ds.
Now we can apply Theorem to obtain that

Erritds = e_f(T—t)/ E[l{Tgu}SS—UST—Sf(XU)|Ft] dUdS,
t

We know that Err3 , is integrable in s on [t, T] almost surely.
Thus the totality of the error is obtained as

T T s
/ Err;,tds = e_r(T_t) / ds/ dUE[l{TSu}SS_uST—sf(Xu)|~7:t]
t t t

=: Errp ;.



n-th Order Static Hedge

By repeating this procedure, we obtain the n-th order static hedges
and the n-th error for any n:

Theorem
We have that

efr(Tft){ — E[f(X7)1{rs 1y | Fe] + Elnf (X7)| Fe]
n T K
-y / ds E[(1— n)SH (%) 7}
k=171
-
= 70 [T ol S AXIF = B
t

where

t
st—s, s :/ S5 Vs k=23, .
0



Perfect Static Hedge

The previous formula reads: the semi-static hedge of the
knock-out option with pay-off f, by the option with pay-off
nf(X7) and the options with pay-off >-7_, (1 — 1)S3* f(X,)du
for u < T, has the error

.
/t du E[SE" . F(X,)|F] 2)

at the knock-out time 7.



Perfect Static Hedge

Under suitable conditions, it converges to zero as n goes infinity so
that we have the following

Theorem

The series > 32 (1 —n)S3k  f(X,) is absolutely convergent almost
surely, and the option with pay-off nf(Xt) and the options with
pay-off >20° 1 (1 —1)Sk  f(X,)e " (T=%)du for each u < T gives a
perfect semi-static hedge (the error is zero almost surely).



Hint

Hint: the lemma can be rephrased as
qt(X’ y)

— pt(x,y)+/otds/dz gs(x,2)ho(z, y)

by which g can be understood as a solution to a Volterra type
equation.



Thank you for your kind attentions.



