

Energy Discussion Group in EME, The University of Edinburgh 18/05/2020

Dr. Meltem Peker

Research Associate, Newcastle University

*joint work with Bahar Y. Kara^a and A. Selin Kocaman^a

^a Bilkent University, Turkey

- **Power system planning and operations** is a decision making process to supply sufficient and continuous power to consumers and determines a minimum cost strategy for operating the system.
- The problem is a challenging due to its complexity, dimensionality and nonlinearity.
- Complexity of the problem increases due to
 - Load growth
 - Increase generation from renewable energy sources (RES)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ ○ ◆ ○ ◆

- Forecast errors
- Unexpected failures of components

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction Load growth

Global total electricity capacity

Source: IEA, Renewables 2017

About 40% increase in the last 15 years

Introduction Load growth

Global total electricity capacity

Source: IEA, Renewables 2017

- About 40% increase in the last 15 years
- Mostly dependent on fossil fuels

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction Load growth

Global total electricity capacity

Source: IEA, Renewables 2017

- About 40% increase in the last 15 years
- Mostly dependent on fossil fuels
- Increase in renewable energy sources in the last decade

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Introduction Penetration of RES in supply

Net renewable capacity additions by technology

- \bullet Share of RES in supply increases from 19% to 24%*
- The share is expected to be 31% in 2040*

*Source: IEA, World Energy Outlook, 2017

Renewable Energy Sources

- Advantages: Sustainable
 - Clean

Reduce carbon emission and dependence on fossil fuels

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Conclusion

Renewable Energy Sources

- Advantages: Sustainable
 - Clean
- Disadvantages: Intermittent
 - Variable
 - Dependent on spatial locations

- Reduce carbon emission and dependence on fossil fuels
- Affect power system reliability and stability

Renewable Energy Sources

- Advantages: Sustainable
 - Clean
- Disadvantages: Intermittent
 - Variable
 - Dependent on spatial locations

- Reduce carbon emission and dependence on fossil fuels
- Affect power system reliability and stability

Control Mechanisms

- Demand-Side Management (DSM)
- Renewable Energy Curtailment (REC)
- Energy Storage Systems (ESS)
- Transmission Switching (TS)

Control Mechanisms Demand-Side Management (DSM)

• Group of activities to increase overall efficiency in systems

Control Mechanisms Demand-Side Management (DSM)

- Group of activities to increase overall efficiency in systems
- Demand response (DR) reshapes consumers' load profiles
 - Load-shedding: Reduces energy consumption at peak periods
 - **Load-shifting:** Shifts energy consumption from peak periods to off-peak periods

Control Mechanisms Renewable Energy Curtailment (REC)

- Curtails renewable energy due to technical and operational reasons
 - To maintain system voltage and frequency levels
 - To satisfy minimum generation requirements from thermal sources

Source: https://sandiego350.org/ab-813-renewable-energy-curtailment/

・ロト ・ 四ト ・ ヨト ・ ヨト ・ 白ト

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Control Mechanisms Energy Storage Systems (ESS)

- Stores electrical energy generated at off-peak hours to use at peak hours
- Smooths variability and intermittency of RES

Source: https://www.essinc.com/energy-storage-applications/utility/

Control Mechanisms Transmission Switching (TS)

- Identifies the branches that should be taken out of service
- Decreases transmission congestion

Control Mechanisms Transmission Switching (TS)

- Identifies the branches that should be taken out of service
- Decreases transmission congestion
- Flow in power networks is special:
 - Power flows on all lines in proportion to the electrical characteristics of the lines
 - If all lines are identical, the flows should be as follows:

Control Mechanisms Transmission Switching (TS)

If switching is not allowed and capacity between nodes 1 and 3 is less than 200 MW, then system turns out to be infeasible!

Control Mechanisms Transmission Switching (TS)

If switching is not allowed and capacity between nodes 1 and 3 is less than 200 MW, then system turns out to be infeasible!

• New lines/units should be added to make it feasible

Computational Study

Control Mechanisms Transmission Switching (TS)

If switching is not allowed and capacity between nodes 1 and 3 is less than 200 MW, then system turns out to be infeasible!

• New lines/units should be added to make it feasible

If the line is opened or switched, then system becomes feasible!

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Computational Study

Control Mechanisms Transmission Switching (TS)

If switching is not allowed and capacity between nodes 1 and 3 is less than 200 MW, then system turns out to be infeasible!

Capacity of lines= 300 MW 2 00 MW 2 00 MW 2 00 MW 300 MW 3

• New lines/units should be added to make it feasible

If the line is opened or switched, then system becomes feasible!

 \bullet No need for new lines/units

Objective

Although renewable energy sources have many advantages, they affect power system reliability and stability due to their disadvantages (e.g. intermittency, variability).

Control mechanisms could be utilized for integrating RES into power systems and decreasing disadvantages of them.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Objective

Although renewable energy sources have many advantages, they affect power system reliability and stability due to their disadvantages (e.g. intermittency, variability).

Control mechanisms could be utilized for integrating RES into power systems and decreasing disadvantages of them.

Aim of this study

To discuss value of control mechanisms to handle the variability and intermittency of RES.

Literature Review

ESS

- Siting
- Sizing

Pandzic et al. (2015), Wogrin and Gayme (2015), Fernandez-Blanco et al. (2017), Go et al. (2016), Xiong and Singh (2016), Qiu et al. (2017)

Literature Review

ESS

- Siting
- Sizing

Pandzic et al. (2015), Wogrin and Gayme (2015), Fernandez-Blanco et al. (2017), Go et al. (2016), Xiong and Singh (2016), Qiu et al. (2017)

- TS
 - Security, economic, efficiency etc.
 - Increasing penetration of RES Villumsen et al. (2013), Qiu and Wang (2015), Nikoobakht et al. (2017)

Literature Review

ESS

- Siting
- Sizing

Pandzic et al. (2015), Wogrin and Gayme (2015), Fernandez-Blanco et al. (2017), Go et al. (2016), Xiong and Singh (2016), Qiu et al. (2017)

- TS
 - Security, economic, efficiency etc.
 - Increasing penetration of RES Villumsen et al. (2013), Qiu and Wang (2015), Nikoobakht et al. (2017)
- ESS and TS
 - Increasing penetration of RES Nikoobakht et al. (2016), Dehghan and Amjady (2016), Aghaei et al. (2018)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ ○ ◆ ○ ◆

Literature Review

- DSM (Load-shedding LS)
 - Penalty cost for its impact on quality of life
- REC
 - Penalty cost for compensation of revenue losses from renewable energy generators

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Literature Review

- DSM (Load-shedding LS)
 - Penalty cost for its impact on quality of life
- REC
 - Penalty cost for compensation of revenue losses from renewable energy generators

Penalty costs are important...

Operational and/or tactical plans may be affected by penalty costs.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Contribution

• ESS and TS

	investment costs	LS	REC	sizing	
Nikoobakht et al. (2016)	×	X	×	X	
Aghaei et al. (2018)	×	penalty cost	penalty cost	X	
Dehghan and Amjady (2016)	line, ESS	penalty cost	×	X	

Contribution

ESS and TS

	investment costs	LS	REC	sizing
Nikoobakht et al. (2016)	×	×	×	X
Aghaei et al. (2018)	×	penalty cost	penalty cost	X
Dehghan and Amjady (2016)	line, ESS	penalty cost	×	X
Our study	line, ESS	constraint	constraint	 Image: A set of the set of the

Our study

 \bullet fills a gap in the literature by simultaneously considering TS, ESS siting and sizing decisions

• examines the value of co-optimizing control mechanisms to handle variability of RES.

Contribution

ESS and TS

	investment costs	LS	REC	sizing
Nikoobakht et al. (2016)	×	X	×	X
Aghaei et al. (2018)	×	penalty cost	penalty cost	X
Dehghan and Amjady (2016)	line, ESS	penalty cost	×	X
Our study	line, ESS	constraint	constraint	 ✓

Our study

 \bullet fills a gap in the literature by simultaneously considering TS, ESS siting and sizing decisions

• examines the value of co-optimizing control mechanisms to handle variability of RES.

We propose a two-stage stochastic programming model.

• First stage:

Investment decisions: ESS and lines

• Second stage:

Operational decisions: flow, generation amount, status of line

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Problem Formulation

Parameters	Explanation
c _g om	Operation cost of unit g (\$/MWh)
caline	Annualized inv. cost of candidate line a (\$)
c ^E	Annualized inv. cost of ESS for energy capacity (\$/MWh)
c ^P	Annualized inv. cost of ESS for power rating (\$/MW)
c ^d	Discharging cost (\$/MW)
<u> </u>	Maximum and minimum energy capacity of ESS (MWh)
<u></u> <i>P</i> , <u><i>P</i></u>	Maximum and minimum power rating of ESS (MW)
η	Charging/Discharging efficieny of ESS
α	Energy-power ratio of ESS
E ₀	Initial energy level at ESS
Fa	Capacity of line <i>a</i> (MW)
\overline{G}_{igts} (<u>G</u> _{igts})	Max (Min) generation limits from unit g in bus i at hour t of scenario s (MW)
R^{up}_{σ} (R^{down}_{σ})	Ramp-up (ramp-down) rate of generation unit g
Dits	Demand of bus <i>i</i> at hour <i>t</i> of scenario <i>s</i> (MW)
φ_a	Susceptance of line a (p.u.)
au	Maximum number of switchable lines
p ^{ls}	Ratio of load that can be shed to total load
p ^{rec}	Ratio of renewable generation that can be curtailed to total generation
σ_s	Probability of scenario s
NS	Number of days in the target year

Problem Formulation

Dec. Var.	Explanation
Y_i	1 if ESS is built at node i, 0 o.w.
Y_i^E	Energy capacity of ESS at node <i>i</i>
Y_i^P	Power rating of ESS at node <i>i</i>
Ĺa	1 if candidate line <i>a</i> is built, 0 o.w.
P_{its}^c	Charging rate of ESS at node <i>i</i> at hour <i>t</i> of scenario <i>s</i>
P_{its}^d	Discharging rate of ESS at node i at hour t of scenario s
X _{its}	Status of ESS at bus i at hour t of scenario s, 1 is for charging/0 is for discharging
Eits	State of charge of ESS at bus <i>i</i> at hour <i>t</i> of scenario <i>s</i>
f _{ats}	Power flow on line a at hour t of scenario s
Z _{ats}	1 if line a is closed at hour t of scenario s, 0 if it is open
G _{igts}	Power generation of unit g in node i at hour t of scenario s
DS _{its}	Load shedding amount at bus <i>i</i> at hour <i>t</i> of scenario <i>s</i>
θ_{its}	Voltage angle of node <i>i</i> at hour <i>t</i> of scenario <i>s</i>

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

cost

cost

Mathematical Model

Computational Study

Problem Formulation Mathematical Model

$$\begin{array}{ll} \min & z_{line} + z_{storage} + z_{om} & (1) \\ z_{line} = \sum_{a \in A \setminus EA} c_a^{line} L_a \\ cost & z_{storage} = \sum_{i \in B} (c^E Y_i^E + c^P Y_i^P) \\ total operational \\ cost & z_{ses} NS\sigma_s \sum_{i \in B} \sum_{t \in T} \{\sum_{g \in C \setminus C_R} c_g^{om} G_{igts} + c^d P_{its}^d\} \end{array}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

p

g d

n li

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Problem Formulation Mathematical Model

s.t	$\sum_{g \in C} G_{igts} + \sum_{a \in A\Psi^{-}(a)=i} f_{ats} - \sum_{a \in A\Psi^{+}(a)=i} f_{ats} +$	
ower balance	$-P_{its}^{c}+P_{its}^{d}=D_{its}-DS_{its}$	$\forall i \in B, t \in T, s \in S$ (2)
	$G_{igts} \leq \overline{G}_{igts}$	$\forall i \in B, g \in C_r, t \in T, s \in S$ (3)
	$\underline{G}_{igts} \leq G_{igts} \leq \overline{G}_{igts}$	$\forall i \in B, g \in C \setminus C_r, t \in T, s \in S$ (4)
spatch	$R_g^{down} \leq G_{igts} - G_{igt-1s} \leq R_g^{up}$	$\forall i \in B, g \in C \setminus C_r, t \in T, s \in S$ (5)
ſ	$-\overline{F}_{a}Z_{ats} \leq f_{ats} \leq \overline{F}_{a}Z_{ats}$	$orall a \in A, t \in \mathcal{T}, s \in \mathcal{S}$ (6)
etwork	$f_{ats} = \varphi_a Z_{ats} (heta_{its} - heta_{jts})$	$\forall a \in AS_{ij}, t \in T, s \in S$ (7)
\neg	$Z_{ats} \leq L_a$	$\forall a \in A, t \in T, s \in S$ (8)
l	$\sum_{a \in A} L_a \le \sum_{a \in A} Z_{ats} + \tau$	$\forall t \in T, s \in S$ (9)
LS restriction	$\sum_{i \in B} \sum_{t \in T} DS_{its} \le p^{ls} \sum_{i \in B} \sum_{t \in T} D_{its}$	$\forall s \in S$ (10)
REC restriction	$\sum_{i \in B} \sum_{g \in C_R} \sum_{t \in T} G_{igts} \ge (1 - p^{rec}) \sum_{i \in B} \sum_{g \in C_R} \sum_{t \in T} \overline{G}_{igts}$	$\overline{\hat{s}}_{igts}$ $\forall s \in S (11)$

Computational Study

Conclusion

Problem Formulation Mathematical Model

storages

power related constraints for storages

- $\begin{array}{c} \mathsf{E}_{its} = \mathsf{E}_{it\text{-}1s} + \Delta t \big(\eta \mathsf{P}_{its}^c \frac{1}{\eta} \mathsf{P}_{its}^d \big) \\ \\ \mathsf{energy related} \\ \mathsf{constraints for} \end{array} \begin{cases} \underline{\mathsf{E}} \mathsf{Y}_i \leq \mathsf{E}_{its} \leq \mathsf{Y}_i^{\mathsf{E}} \\ \underline{\mathsf{E}} \mathsf{Y}_i \leq \mathsf{Y}_i^{\mathsf{E}} \leq \overline{\mathsf{E}} \mathsf{Y}_i \end{cases}$ $E_{i0s} = E_{iTs} = E_0 Y_i$ $PY_i < Y_i^P < \overline{P}Y_i$ $\begin{cases}
 P_{its}^{c} \leq Y_{i}^{P} \\
 P_{its}^{d} \leq Y_{i}^{P} \\
 P_{its}^{c} \leq \overline{P}X_{its} \\
 P_{its}^{d} \leq \overline{P}(1 - X_{its})
 \end{cases}$ $\alpha Y_i^P < Y_i^E$
 - + DomainConstraints

 $\forall i \in B, t \in T, s \in S$ (12) $\forall i \in B, t \in T, s \in S$ (13) $\forall i \in B, t \in T, s \in S$ (14) $\forall i \in B, s \in S$ (15) $\forall i \in B, t \in T, s \in S$ (16) $\forall i \in B, t \in T, s \in S$ (17) $\forall i \in B, t \in T, s \in S$ (18) $\forall i \in B, t \in T, s \in S$ (19) $\forall i \in B, t \in T, s \in S$ (20) $\forall i \in B, t \in T, s \in S$ (21)

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

*ロ * * @ * * ミ * ミ * ・ ミ * の < ?

Problem Formulation

• Constraint (7) is nonlinear: $f_{ats} = \varphi_a Z_{ats} (\theta_{its} - \theta_{jts})$

• Generally used linearization technique:

 $-M_{a}(1-Z_{ats}) + \varphi_{a}(\theta_{its} - \theta_{jts}) \leq f_{ats} \leq M_{a}(1-Z_{ats}) + \varphi_{a}(\theta_{its} - \theta_{jts})$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ ○ ◆ ○ ◆

Problem Formulation

• Constraint (7) is nonlinear: $f_{ats} = \varphi_a Z_{ats} (\theta_{its} - \theta_{jts})$

• Generally used linearization technique:

$$-M_{a}(1-Z_{ats}) + \varphi_{a}(\theta_{its} - \theta_{jts}) \leq f_{ats} \leq M_{a}(1-Z_{ats}) + \varphi_{a}(\theta_{its} - \theta_{jts})$$

We define these equations:

$$\begin{array}{l} f_{ats} = f_{ats}^+ - f_{ats}^- & \theta_{its} - \theta_{jts} = \Delta \theta_{ats}^+ - \Delta \theta_{ats}^- \\ f_{ats}^+, f_{ats}^- \ge 0 & \Delta \theta_{ats}^+, \Delta \theta_{ats}^- \ge 0 \end{array}$$

• We linearize as follows:

$$\begin{array}{ll} f_{ats}^+ \leq \varphi_a \Delta \theta_{ats}^+ & f_{ats}^- \leq \varphi_a \Delta \theta_{ats}^- \\ f_{ats}^+ \geq \varphi_a \Delta \theta_{ats}^+ - \mathcal{M}_a (1 - Z_{ats}) & f_{ats}^- \geq \varphi_a \Delta \theta_{ats}^- - \mathcal{M}_a (1 - Z_{ats}) \end{array}$$

Model Computa

Computational Study Cor

Computational Study Data Set

IEEE 24-bus power system

- 34 transmission lines
- 10 existing generation nodes

90% of them thermal sources Installed capacity: 3405 MW Load: 2850 MW

500

Computational Study Conclusion

Computational Study Data Set

IEEE 24-bus power system

- 34 transmission lines
- 10 existing generation nodes

90% of them thermal sources Installed capacity: 3405 MW Load: 2850 MW

Modified IEEE 24-bus power system

- Line capacity: -50%
- Thermal sources capacity: -75%
- New solar sources*: 1500 MW/bus
- New wind sources*: 1000 MW/bus

*Each has a different profile

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ ○ ◆ ○ ◆

Computational Study Data Set

- Time horizon: 1 year (365 days)
- By K-means algorithm, 5 representative days are selected
- Number of days in each cluster of K-means algorithm determines the probability of that day
- p^{ls} : 0.0 1.0
- p^{rec}: 0.0 1.0

To observe the effect of TS, we compare two cases:

- $\tau = 0$ (ESS case)
- $\tau = 5$ (ESS-TS case)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Computational Study

- Time horizon: 1 year (365 days)
- By K-means algorithm, 5 representative days are selected
- Number of days in each cluster of K-means algorithm determines the probability of that day
- p^{ls} : 0.0 1.0
- p^{rec}: 0.0 1.0

To observe the effect of TS, we compare two cases:

- τ = 0 (ESS case)
- $\tau = 5$ (ESS-TS case)

We discuss effect of TS on

- Total system cost
- ESS siting and sizing
- LS and REC

Computational Study

Computational Study Effect of TS on total system cost

$$(p^{ls}, p^{rec}) =$$

(0.05, 0.2) - (0.4, 0.5)

Reducing p^{ls} and/or p^{rec} increases total cost in both cases

э

Computational Study Effect of TS on total system cost

- TS substantially decreases total cost for medium p^{ls} and p^{rec} values
- Total system cost savings:
 - Maximum = 16.27%
 - Average = 8.5%

イロト 不得 トイヨト イヨト

э

ical Model Com

Computational Study Con

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ ○ ◆ ○ ◆

Computational Study Effect of TS on ESS siting and sizing

				I	ESS cas	е		ESS-TS case							
					p^{rec}			p ^{rec}							
		0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.20	0.25	0.30	0.35	0.40	0.45	0.50
	0.05	11	8	7	6	6	6	6	11	8	6	6	6	6	6
	0.10	11	9	6	5	4	4	4	10	8	6	4	4	4	4
	0.15	11	9	6	5	3	1	1	10	8	6	5	2	1	1
p^{ls}	0.20	11	9	6	5	3	1	_	10	8	6	5	2	_	_
	0.25	11	9	7	5	3	1	-	10	8	6	5	2	_	_
	0.30	11	9	7	5	3	1	-	10	8	6	5	2	_	—
	0.35	11	9	7	5	3	1	_	10	8	6	4	2	_	_
	0.40	11	9	7	5	3	1	-	10	8	6	4	2	-	—

- Increasing p^{ls} and/or p^{rec} reduces number of storage units
- TS decreases number of storage units

ical Model Com

Computational Study Cor

nclusion

Computational Study Effect of TS on ESS siting and sizing

		Improvement in energy capacity (%)									Improvement in power rating (%)						
		p ^{rec}									p ^{rec}						
		0.20	0.25	0.30	0.35	0.40	0.45	0.50		0.20	0.25	0.30	0.35	0.40	0.45	0.50	
	0.05	3.06	5.08	13.33	5.43	5.43	5.43	5.43		6.53	4.77	17.55	8.27	8.27	8.27	8.27	
	0.10	2.30	11.47	17.42	33.10	20.43	20.43	20.43		6.00	15.88	15.26	27.70	16.70	16.70	16.70	
	0.15	2.25	10.55	2.29	16.21	30.84	3.86	3.86		5.99	14.89	3.89	15.10	27.26	4.28	4.28	
p^{ls}	0.20	2.27	7.32	2.59	25.28	50.02	100.00	-		6.01	10.67	3.34	30.68	57.52	100.00	_	
	0.25	3.17	7.19	14.82	24.51	50.69	100.00	-		7.73	10.52	13.94	30.72	56.80	100.00	_	
	0.30	3.17	7.20	13.77	25.15	50.35	100.00	-		7.73	10.52	13.58	31.18	56.38	100.00	_	
	0.35	3.17	7.19	14.52	26.90	48.61	100.00	-		7.73	10.52	14.30	31.44	54.56	100.00	_	
	0.40	3.17	7.19	14.52	26.90	51.40	100.00	-		7.73	10.52	14.30	31.44	57.55	100.00	_	

- Savings in total energy capacity:
 - Maximum: 50.69%
 - Average: 24.11%

- Savings in total power rating:
 - Maximum: 57.52%

• Average: 26.27%

Computational Study

Computational Study Effect of TS on ESS siting and sizing

- Decrease in total energy capacity (and power rating)
- Change locations of storage units

• Decrease in number of storage units

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Computational Study Effect of TS on LS and REC

• To observe effect of TS on LS and REC, pareto optimal solutions for the following model are obtained with a limited budget

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Computational Study Effect of TS on LS and REC

• To observe effect of TS on LS and REC, pareto optimal solutions for the following model are obtained with a limited budget

- TS improves efficiency of the power system
 - minimum p^{ls} 0.18 -> 0.16
 - minimum p^{rec} 0.37 → 0.35

• We co-optimize TS, ESS (siting and sizing) and transmission line investments.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ ○ ◆ ○ ◆

• We analyze effect of co-optimizing control mechanisms.

- We co-optimize TS, ESS (siting and sizing) and transmission line investments.
- We analyze effect of co-optimizing control mechanisms.
- We conclude that
 - TS can be a more efficient and cheaper solution compared to building new lines or storages.
 - TS is noteworthy to analyze for power systems with especially renewable energy targets.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

• ESS are effective for meeting various REC limits.

References

- \bullet H. Pandzic et al. Near-optimal method for siting and sizing of distributed storage in a transmission network. IEEE Transactions on Power Systems, 30(5):2288-2300, 2015.
- S. Wogrin and D.F. Gayme. Optimizing storage siting, sizing, and technology portfolios in transmission-constrained networks. IEEE Transactions on Power Systems, 30(6):3304-3313, 2015.
- R. Fernandez-Blanco et al. Optimal energy storage siting and sizing: A WECC case study. IEEE Transactions on Sustainable Energy, 8(2):733-743, 2017.
- R.S. Go et al. Assessing the economic value of co-optimized grid-scale energy storage investments in supporting high renewable portfolio standards. Applied Energy, 183:902-913, 2016.
- P. Xiong and C. Singh. Optimal planning of storage in power systems integrated with wind power generation. IEEE Transactions on Sustainable Energy, 7(1):232-240, 2016.
- T. Qiu et al. Stochastic multistage coplanning of transmission expansion and energy storage. IEEE Transactions on Power Systems, 32 (1):643-651, 2017.
- J.C. Villumsen et al. Line capacity expansion and transmission switching in power systems with large-scale wind power. IEEE Transactions on Power Systems, 28(2):731-739, 2013.
- F. Qiu and J. Wang. Chance-constrained transmission switching with guaranteed wind power utilization. IEEE Transactions on Power Systems, 30(3):1270-1278, 2015.
- A. Nikoobakht et al. Securing highly penetrated wind energy systems using linearized transmission switching mechanism. Applied Energy, 190:1207-1220, 2017.
- \bullet A. Nikoobakht et al. Managing the risk of uncertain wind power generation in exible power systems using information gap decision theory. Energy, 114:846-861, 2016.
- J. Aghaei et al. Transmission switching, demand response and energy storage systems in an innovative integrated scheme for managing the uncertainty of wind power generation. International Journal of Electrical Power & Energy Systems, 98:72-84, 2018.
- S. Dehghan and N. Amjady. Robust transmission and energy storage expansion planning in wind farm integrated power systems considering transmission switching. IEEE Transactions on Sustainable Energy, 7(2):765-774, 2016.

Questions & Comments?

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ □臣 = のへ⊙

meltem.peker1@ncl.ac.uk