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Motivation

» Proxy Generator uses multiple polynomial regression in LSMC which
— is a well known and robust statistical method
— has great intuitive appeal
— has straight-forward formulae
— uses a simple forward stepwise approach to find a “best” model

» Many proxy generation problems can successfully rely upon polynomials

» In our experience, we do see a small number of problems which are more challenging

» To avoid too much analyst intervention for the more challenging fits when hundreds of
proxies are needed, is there an alternative regression technique we can rely on?

» In this presentation we ask “what other techniques are out there?”
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Nested-stochastic simulations

Solvency 2 Regulations Require a “downside risk” measurement

Real World Scenarios Market Consistent Scenarios

1 Year of Economic Risk

| |

Liability Year 1 Liability Years 2 — End

o)
Mooby’s ATRC, Edinburgh, Dec 2014 4
ANALYTICS



Least Squares Monte-Carlo Solution

Real World Scenarios Market Consistent Scenarios
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Features of a Good Proxy
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Features of a Good Proxy: |

>

v

Parsimony
— It should use a minimally sufficient set of risk drivers (including powers and cross terms)

>

\d

Compatibility with downstream software
— Ease of communication with downstream software
— It should use a relatively small number of parameters in a succinct representation

Good validation on “accurate” VValidation Scenarios

N
v

High goodness-of-fit measure without over-fit

N
A4

— The in-sample R-squared should be as high as possible
— The out-of-sample R-squared should be as close as possible to the in sample R-squared
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Features of a Good Proxy: I

>

v

Unbiased predictions of minimum variance
— Any evidence of systematic over- or under-estimation in the model predictions is evidence of bias

— This often involves trading bias against variance in finding an optimal estimator

N
v

Scalability to high dimensions

— For large numbers of risk drivers and fitting scenarios, the memory requirements and the time
taken can become considerable

— When a large number of parameters are being estimated, their standard errors are large and our
ability to recover a meaningful model is reduced

N
A4

Short model fitting time

N
A4

Good model specification

— Proxy models which are well specified will be able to approximate arbitrarily closely the underlying
data generation process, given enough fitting scenarios
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Alternative Regression Methods for LSMC

» Examples of linear and nonlinear regression methods:
— Mixed Effects Multiple Polynomial Regression
— Generalized Additive Models
— Atrtificial Neural Networks
— Regression Trees
— Finite Element Methods
» In other work we have considered local regression methods such as
— kernel smoothing and
— loess / lowess

» In this presentation we consider the merits of artificial neural networks
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Artificial Neural Networks
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Artificial Neural Networks

» These were simultaneously invented by the computer science and statistics communities

» They have a heritage of being used in

— Classification problems such as in spam filters or shopping preferences, learning as they “see”
more and more data

— They are a natural alternative to logistic regression problems

— They can also be used as nonlinear regression tools

N
v

They also have the unfortunate heritage of being known as “black-box” techniques with
little intuitive appeal — they just work

N
v

They are often quoted as being accurate but subject to over-fitting at the same time

» However, if we think of them as nonlinear regression tools then they are simple statistical
constructs with parameters to be found by minimizing the mean squared prediction error
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But what is a neural network?

A)

output

synapse synapses
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Neural Network Structure
Input layer / hidden layer / output layer
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Formulae

Both multiple polynomials and neural networks have similar functional forms

Polynomial Regression

g P
Yo = Bp + Z_E[I'ﬂl'[-l— ZZ_EL-E-::'IL-IJ--I— higher order terms
=1

=1 j=1

Neural Network and Activation Function

1
Ve = o+ ZWL‘RIL""Z wip @ | a; + Zwari el =5 PG

=K j=k [=]
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VBA Implementation

- —
‘E Microsoft Visual Basic - NeuralNetworkProxyFunction_VBAexample.xlsm - [vbNeuralNetwork (Code)]

% File Edit View Inset Format Debug Run  Tools Add-Ins  Window Help

Type a question for help - -8 X
EE-E % L EA9 e 03k BEE %@ L cozs .
Project - VBAProject ﬂ |IGeneraI] j |vbNeuraINetworkProxyFunc‘tion j
B = ||& = = g En1m s
z Step 1: Scale inputs z‘
@ atpvbaen.xls (ATPVBAEN.XLAM) For i = 1 To nI
&% SOLVER (SOLVER.XLAM) x(1, i) = x(1, i) / s(i, 1)
&% vBAProject (FUNCRES.XLAM) Next i
E@ VBAProject (NeuralNetworkProxyFunction_VBAexal
= -#5 Microsoft Excel Objects '"Step 2: Predict scaled neural network outputs
Sheet10 (NMet_weights) For k = 1 To n0
Sheet11 (NMet_scaling) ¥ =
Sheet3 (ProxyCalcs) F

Sheets (Polynomial_coefficents)
4] ThisWarkbook

E-E5 Modules

2% vbNeuralNetwork

¥ vbPolynomial

& weighted sums from each hidden node at k-th output node

1ted sums of inputs at each hidden node

'and then pass through the logit activation function
sum = sum + w({i, j - nI - 1) * x({1, i - 1)

Hext i

"Contri

bution to each hidden node from the first bias node
sum = sum + w{l, j - nI - 1)
"Hidden layer contribution to k-th output node
v =¥ + wi(j, nH + k) * logit (sum)

Hext j

For 1 = 2 Tonl + 1

Skip layer contributions at k-th output node
4| 1l =v +w(i, ni + k) * x(1, i - 1)

Properties - vbNeuralNetwork

1 contribution to k-th output from second bias node

|vbNeuraINetwork Module vy =y + wi(l, nH + k:||

= -~
i

Alphabetic IC teqarized 'Reintroduce scale and store results
= output (k} = v * s(nl + k, 1)
3] vbMNeuralMNetwork Next k

wbHeuralNetworkProxyFunction = output

End Function

'"Simple implementation of the logistic function to be
Function logit (ByRef x As Double) As Double

logit = 1 / (1 + Exp(-x))

End Function

used a= the n

1 network's activation £

| | E
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Fitting a Neural Network

-
t) RStudio s - — —

File Edit Code Miew Plots Session Project Build Tools Help
@l-l-l 1

skip=TRUE, Tinout=T,maxit=1000, trace=TRUE,rang=0.1)
# weights: 8

initial wvalue 44.040561

iter 10 value 13.952072

iter 20 wvalue 10.725342

iter 30 value 10.449023

iter 40 value 10.435875

iter 50 wvalue 10.431929

iter 60 value 10.431642

final wvalue 10.431362
converged

> summary({net2)

a 1-2-1 network with 8 weights

b-=0 hl-»0 h2-»0 il-=0

0.02 1.13 -1.89 0.00

> Rsqly,fitted.values(net2),p=8)
R2 R2a

0.5856764 0.5827557

[ | >-|

&] Project: [None) ~

Source Workspace  History
Console Files Plots Packages Help
> netZ<-nnet(x,y,size=2,decay=1e-3, & = P a (=

R: Fit Meural Metworks =

nnet {nnet} R Documentation

Fit Neural Networks

Description

Fit single-hidden-layer neural network, possibly with skip-layer connections.

options were - skip-Tayer connections Tinear output units decay=0.001 Usage
b->h1 i1-=hl

0.84 I—0_93 nnet {x, ...)
b->h2 i1->h2

-0.36 -1.82

#% 53 method for class 'formula'
nnet (formula, data, weights, ...,
sgubset, na.action, contrasts = NULL)

##% Default 53 method:

nnet (x, v, weights, size, Wts, mask,
linout = FALSE, entropy = FALSE, softmax = FALSE,
censored = FALSE, skip = FALSE, rang = 0.7, decay = 0,
maxit = 100, Hess = FALSE, trace = TRUE, MaxNWts = 1000,
abstol = 1.0e-4, reltol = 1.0e-8, ...)

m

Arguments

formula  Aformula of the form class ~ =1 + x2 +

x matrix or data frame of = values for examples.

v matrix or data frame of target values for examples. -
4] 1 | r
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Nonlinear edge case example
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Example 1000 pairs x, y with normal errors (sd 0.1)

Data & Trend: y = x*exp(-x)+error
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Degree 1 polynomial fit

linear fit, R2a = 41.2%
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Degree 2 polynomial fit

quadratic fit, R2a = 45.5%
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Degree 3 polynomial fit

cubic fit, R2a = 47.6%
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Degree 4 polynomial fit

quartic fit, R2a = 54%
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Degree 5 polynomial fit

degree 5 fit, R2a = 57.3%
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Degree 6 polynomial fit

degree 6 fit, R2a = 57.3%

04

00

-0.2

o)
Mooby’s ATRC, Edinburgh, Dec 2014 24
ANALYTICS



-]
Neural network one hidden node fit

one hidden node, R2a = 41%
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Neural network two hidden node fit

two hidden node, R2a = 58.3%
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Residuals Analysis

degree 6 polynomial QQ plot
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Actual trend subtract the fit

polynomial regression
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Motivating example
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Variable Liability Value

» Life policy has an embedded guarantee of 3.25%

» Involved 9 risk-drivers including equity level and volatility, real and nominal yield curve
factors and credit in addition to some non-market risks.

» The exercise was to model the liability in a single time-step / static regression problem.
» Firstly, a multiple polynomial regression was performed

— up to cubic degree in each risk-driver

— using a layered forward stepwise approach

— without term removal

» Secondly, a neural network in 9 input nodes, a bias node, 2 hidden nodes and a skip
layer connection was fitted to the same data.
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Variable Liability Value (continued)

N=25,000 Regression Neural Network
Time Taken (seconds) 3797 (1 hr. approx.) 75
Number of terms/weights 52 44
In sample R-squared 72.30% 69.38%
Out of sample R-squared 72.23% 69.28%

The out-of-sample R-squared is calculated by 10-fold cross validation
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Network Analysis in more detall
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Neural Network Analysis

Fitting a network involves determining the network weights over a selection of hidden
layer sizes and regularisation parameter values

>

v

>

v

25,000 fitting scenarios are split into:
— 15,000 training scenarios to determine the network weights
— 5,000 validation scenarios to determine the hidden layer size and weight decay

— 5,000 test scenarios to assess the network on new / unseen scenarios

» We use the validation set to determine how many scenarios we need

KA
v

lllustrate the bias / variance trade-off with hidden layer size and weight decay

Describe how to deal with heteroscedastic effects

KA
v
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Good model output...
R2_test=97.2%
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A Challenging Fit!
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Bias-Variance Trade-off I. for fixed weight decay

Data Set
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Bias-Variance Trade-off Il: for fixed hidden layer size
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Variation with Model Size and Fitting Scenario Budget
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Heteroscedasticity

observed - model
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Conclusion

» Multiple polynomial regression is a robust and practical solution to the proxy generation
problem working in the majority of cases

» Some proxy problems can be more challenging

» Alternative methodologies exist including generalised additive models, local regression
methods and artificial neural networks

» We investigated one of these alternative approaches, neural networks, with a view to
perhaps including it as an option within ProxyGenerator in the future

» Neural networks work at least as well as multiple polynomial regression

» Bias-variance trade-off and optimal scenario counting was discussed alongwith methods
to counteract heteroscedastic effects
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