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Introduction

The motivation is to gain an improved understanding of mortality.�
Information is lost in aggregate mortality data . . .�
. . . Potentially found in causal mortality data!

Reliable data is not readily available.�
Office for National Statistics data with socio-economic variables!

What if circulatory-related deaths are considerably reduced?�
This scenario cannot be tested using aggregate models . . .�
. . . But it can be tested using causal models!
�

Which socio-economic group stands to benefit most?

Be careful! Causes are intrinsically dependent!�
Instantaneous probabilities vs. annual probabilities.

Aim: quantify the impact on {residual} life expectancy.�
Study effects of scenarios on socio-economic gaps.

 {This is a work-in-progress; feedback is most welcome!}
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Data

The UK Office for National Statistics.�
Data, by gender, for 1981–2007.�
Five-year age groups, from 25–29, . . . , 80-84, and 85+.
�

Socio-economic circumstances in quintiles.

Deaths categorized by the International Classification of Diseases.�
When classifications change, comparability ratios are applied.�
This is to maintain some consistency under classification shifts.

Adjusted death rates are produced and analyzed.�
Relevant exposure adjustments are also made.
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Multinomial Logistic Model

Let Di(x, t) denote random deaths from cause i for age x at time t.

Let L(x, t) denote the subsequent survivors.

Consider n causes.

Y (x, t) = (D1(x, t), D2(x, t), . . . , Dn(x, t), L(x, t))′.

Assume Y (x, t) ∼ multinomial distribution {π(x, t), E(x, t)}, with

π(x, t) = {q1(x, t), q2(x, t), . . . , qn(x, t), p(x, t)}′,

where, n∑
k=1

qk(x, t) + p(x, t) = 1,

and
E(x, t) = L(x, t) +

n∑
k=1

Dk(x, t).

 Annual probabilities and initial exposure.
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Multinomial Logistic Model

Adopt survival as the baseline category in the logistic framework.

log
qi(x, t)

p(x, t)
= X(x, t)βi, for i ∈ {1, . . . , n}.

X(x, t) is the design matrix, and

βi the regression parameters suited to cause i.

The probabilities are given as follows:

qi(x, t) =
exp{X(x, t)βi}

1 +
∑

k exp{X(x, t)βk}
, for i ∈ {1, . . . , n},

p(x, t) =
1

1 +
∑

k exp{X(x, t)βk}
.
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Multinomial Logistic Model

Models typically include some combination of age, period, and cohort.

 Consider a gender specific model with main and interaction effects:

Age is given by age-groups, which we treat categorically.
�

13 groups: 25-29, 30-34, . . . 80-84, 85+.

Period is treated continuously.
�

Continuous time avoids time-series consideration when forecasting.

Cohort is excluded as a main effect:�
We have a limited number of periods.
�

Causal mortality is more intuitively linked to period effects.

Socio-economic circumstance quintiles are treated categorically.

Age–period interaction is included!
�

“Lee-Carter” observation: age-groups have different time trends.

Include socio-economic–age and –period interactions!

D. H. Alai (CEPAR, UKC) Causal Mortality Modelling 1 December 2014 7 / 20



The Regression Formula

ηi(g, x, s, t) = β0,i + β1,g,i + β2,x,i + β3,s,i + β4,it

+β5,g,x,i + β6,g,s,i + β7,g,it

+β8,x,s,i + β9,x,it+ β10,s,it

+β11,g,x,s,i + β12,g,x,it+ β13,g,s,it.

where,

ηi(g, x, s, t) = ln
qi(g, x, s, t)

p(g, x, s, t)
.

Highlighted terms are gender-specific.
 What remains is an intercept, three main and interaction effects.
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Cause Elimination

Consider the elimination of cause j.

The probabilities in our model are adjusted as follows:

qj(x, t) = 0,

qi(x, t) =
exp{X(x, t)βi}

1 +
∑

k 6=j exp{X(x, t)βk}
, i 6= j

p(x, t) =
1

1 +
∑

k 6=j exp{X(x, t)βk}
.

Representative of a proportional re-weighting of the probabilities.

 This essentially ignores extrinsic dependence amongst the causes.�
{We are considering “multi-cause data” to address this!}

D. H. Alai (CEPAR, UKC) Causal Mortality Modelling 1 December 2014 9 / 20



Shocking Causal Mortality

In general, suppose we introduce a shock ρi ≥ 0 to cause i.

Values of ρi > 1 signify a marginal increase in mortality.
The value ρi = 0 corresponds to cause elimination.

The probabilities are adjusted as follows:

qi(x, t) =
ρi exp{X(x, t)βi}

1 +
∑

k ρk exp{X(x, t)βk}
,

p(x, t) =
1

1 +
∑

k ρk exp{X(x, t)βk}
.

Based solely on ρi > 0, will qi(x, t) increase or decrease?

Previous work has considered shocks on an instantaneous basis.

The annual approach re-distributes less probability to survival.�
It is more conservative in a mortality-sense.
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Analysis of Effects
Effect DF Wald Pr > ChiSq

Chi-Square

gender 6 34 < 0.0001
age 72 22012 < 0.0001
sec 24 3407 < 0.0001
year 6 486 < 0.0001
gender*age 72 5016 < 0.0001
gender*sec 24 556 < 0.0001
gender*year 6 36 < 0.0001
age*sec 288 70431 < 0.0001
age*year 72 23398 < 0.0001
sec*year 24 3668 < 0.0001
gender*age*sec 288 2818 < 0.0001
gender*age*year 72 4937 < 0.0001
gender*sec*year 24 557 < 0.0001

Fitting the data results in high significance for all effects!�
{sec = socio-economic circumstances}
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Observed and Fitted {log} Mortality

 Overestimating mortality for this {and older} age-group!�
{Might have to consider quadratic time}
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Observed and Fitted {log} Mortality

 A pretty good fit, especially in the final year!�
{Linear time appears to suffice for this cause}
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Observed and Fitted {log} Survival

 Evidence of compression; especially at higher quintiles!�
{Again, notice underestimation of survival}
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Observed and Fitted {Residual} Life Expectancy

 Expansion in life expectancy?! {an aggregate measure!}�
{It captures the mortality expansion in later age-groups}
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Observed and Fitted {log} Mortality

 It looks like the role of ‘sec’ diminishes with age!�
{A difficult picture to digest, age-effect is dominating!}
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Observed and Fitted {log} Survival

 Survival plots tell a different tale. {Imperfect fit notwg!}�
{Of course, age-effect is, again, dominating.}
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Where we aim to go from here ...

What happens when a cause is shocked {eliminated}!�
What happens to life expectancy?

Again, consider 65 year-old male residual life expectancy:

Life Expectancy Q1 Q2 Q3 Q4 Q5

Fitted 18.59 17.81 17.14 16.06 14.93
Fitted {– circulatory} 24.04 23.21 22.48 21.23 19.95

Gain 5.46 5.40 5.34 5.18 5.02

⇒ The most affluent benefit most from a ‘positive’ shock to circulatory.

Given an ability to shock causes, what criteria should be optimized?

Reduce the socio-economic gap?

Provide the biggest life expectancy gains for the population?

Etc.
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Conclusions

The motivation is to gain an improved understanding of mortality.�
Information is lost in aggregate mortality data . . .�
. . . Potentially found in causal mortality data!

Reliable data is not readily available.�
Office for National Statistics data with socio-economic variables!

What if circulatory-related deaths are considerably reduced?�
This scenario cannot be tested using aggregate models . . .�
. . . But it can be tested using causal models!
�

Which socio-economic group stands to benefit most?

Be careful! Causes are intrinsically dependent!�
Instantaneous probabilities vs. annual probabilities.

Aim: Quantify the impact on {residual} life expectancy.�
Study effects of scenarios on socio-economic gaps.

 {This is a work-in-progress; feedback is most welcome!}
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Thank you!
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