A Dynamic Contagion Process with Applications to Finance & Insurance

Angelos Dassios

Department of Statistics London School of Economics

Outline

- Background and Definitions
- Distributional Properties
- 3 An Application to Credit Risk
- An Application to Ruin Theory
- 5 Generalization: Discretised Dynamic Contagion Process
- 6 Reference

Background and Motivation

Default Contagion

One company's default triggers a series of other companies' default through their network of business and financial links.

Financial Crisis

Recently, the behavior of **default contagion** is more obvious during the current financial crisis, especially after the collapse of Lehman Brothers in September 2008.

Models in Literature (Self Impact)

A point process with its intensity process dependent on the point process itself could provide a more proper model to capture this contagion phenomenon.

- Jarrow and Yu (2001)
- Errais, Giesecke and Goldberg (2009)

Background and Motivation

Models in Literature (External Impact)

On the other hand, the default intensity could be impacted externally by multiple common factors, such as sector or market-wide events.

- Duffie and Gârleanu (2001)
- Longstaff and Rajan (2008)

Our Methodology (Self + External Impact)

We combine both of ideas by introducing the dynamic contagion process, a **new** point processes with both the **externally excited** and **self-excited** dependence structure.

- Hawkes (1971): Hawkes process (with exponential decay)
- Dassios and Jang (2003): Cox process with shot noise intensity
- Lando (1998): model the intensity of credit rating changing with Cox processes

Graphic Illustration (Stochastic Intensity Representation)

externally excited jumps $\{Y^{(1)}, T^{(1)}\}$ (\downarrow), self-excited jumps $\{Y^{(2)}, T^{(2)}\}$ (\uparrow)

Mathematical Definition (Stochastic Intensity Representation)

The dynamic contagion process is a point process

 $N_t \equiv \left\{T_k^{(2)}\right\}_{k=1,2,\dots}$, with non-negative \mathcal{F}_t -stochastic intensity process λ_t following the piecewise deterministic dynamics with positive jumps,

$$\lambda_{t} = a + (\lambda_{0} - a) e^{-\delta t} + \sum_{i \geq 1} Y_{i}^{(1)} e^{-\delta (t - T_{i}^{(1)})} \mathbb{I} \left\{ T_{i}^{(1)} \leq t \right\} + \sum_{k \geq 1} Y_{k}^{(2)} e^{-\delta (t - T_{k}^{(2)})} \mathbb{I} \left\{ T_{k}^{(2)} \leq t \right\}$$

where

• $\{\mathcal{F}_t\}_{t>0}$ is a history of N_t , with respect to which $\{\lambda_t\}_{t>0}$ is adapted,

Mathematical Definition (Stochastic Intensity Representation)

- $a \ge 0$ is the reversion level;
- $\lambda_0 > 0$ is the initial value of λ_t ;
- $\delta > 0$ is the constant rate of exponential decay;
- $\left\{Y_i^{(1)}\right\}_{i=1,2,...}$ is a sequence of *i.i.d.* positive (externally excited) jumps with distribution H(y), y > 0, at the corresponding random times $\left\{T_i^{(1)}\right\}_{i=1,2,...}$ following a homogeneous Poisson process M_t with constant intensity $\rho > 0$;
- $\left\{Y_k^{(2)}\right\}_{k=1,2,...}$ is a sequence of *i.i.d.* positive (self-excited) jumps with distribution G(y), y>0, at the corresponding random times $\left\{T_k^{(2)}\right\}_{k=1,2,...}$;
- The sequences $\left\{Y_i^{(1)}\right\}_{i=1,2,...}$, $\left\{T_i^{(1)}\right\}_{i=1,2,...}$ and $\left\{Y_k^{(2)}\right\}_{k=1,2,...}$ are assumed to be independent of each other.

Mathematical Definition (Cluster Process Representation)

The dynamic contagion process is a **cluster point process** \mathbb{D} on \mathbb{R}_+ : The number of points in the time interval (0, t] is defined by $N_t = N_{\mathbb{D}(0,t]}$. The *cluster centers* of \mathbb{D} are the particular points called *immigrants*, the other points are called *offspring*. They have the following structure:

• The *immigrants* are distributed according to a Cox process A with points $\{D_m\}_{m=1,2,...} \in (0,\infty)$ and shot noise stochastic intensity process

$$a + (\lambda_0 - a) e^{-\delta t} + \sum_{i \geq 1} Y_i^{(1)} e^{-\delta (t - T_i^{(1)})} \mathbb{I}\left\{T_i^{(1)} \leq t\right\},$$

Mathematical Definition (Cluster Process Representation)

- Each *immigrant* D_m generates a *cluster* $C_m = C_{D_m}$, which is the random set formed by the points of *generations* 0, 1, 2, ... with the following branching structure: the *immigrant* D_m is said to be of *generation* 0. Given *generations* 0, 1, ..., j in C_m , each point $T^{(2)} \in C_m$ of *generation* j generates a Cox process on $T^{(2)} = 0$ of *offspring* of *generation* j = 1 with the stochastic intensity $T^{(2)} = 0$ where $T^{(2)} = 0$ where $T^{(2)} = 0$ is a positive (self-excited) jump at time $T^{(2)} = 0$ with distribution $T^{(2)} = 0$ independent of the points of *generation* 0, 1, ..., j.
- D consists of the union of all *clusters*, i.e.

$$\mathbb{D} = \bigcup_{m=1,2,...} C_{D_m}$$

Mathematical Definition (Infinitesimal Generator Representation)

The **infinitesimal generator** of the dynamic contagion process (λ_t, N_t, t) acting on $f(\lambda, n, t)$ within its domain $\Omega(\mathcal{A})$ is given by

$$\mathcal{A}f(\lambda, n, t) = \frac{\partial f}{\partial t} + \delta (\mathbf{a} - \lambda) \frac{\partial f}{\partial \lambda} + \rho \left(\int_0^\infty f(\lambda + \mathbf{y}, n, t) d\mathbf{H}(\mathbf{y}) - f(\lambda, n, t) \right)$$

$$+\lambda\left(\int_0^\infty f(\lambda+y,n+1,t)\mathrm{d}G(y)-f(\lambda,n,t)\right) \tag{1}$$

where $\Omega(A)$ is the domain for the generator A such that $f(\lambda, n, t)$ is differentiable with respect to λ , t for all λ , n and t, and

$$\left|\int_0^\infty f(\lambda+y,n,t)\mathrm{d}H(y)-f(\lambda,n,t)\right|<\infty$$

$$\left| \int_{0}^{\infty} f(\lambda + y, n + 1, t) dG(y) - f(\lambda, n, t) \right| < \infty$$

Joint Laplace Transform - Probability Generating Function of (λ_T,N_T)

Lemma

For the constants $0 \le \theta \le 1$ and $v \ge 0$, we have the conditional joint Laplace transform - probability generating function for the intensity process λ_t and the point process N_t ,

$$\mathbb{E}\left[\frac{\theta^{(N_T-N_t)} \cdot e^{-\mathbf{v}\lambda_T}}{\mathcal{F}_t}\right] = e^{-\left(c(T)-c(t)\right)} e^{-B(t)\lambda_t} \tag{2}$$

where B(t) is determined by the non-linear ODE

$$-B'(t) + \delta B(t) + \frac{\theta}{\theta} \cdot \hat{g}(B(t)) - 1 = 0$$
 (3)

with boundary condition B(T) = v. Then, c(T) - c(t) is determined by

$$c(T) - c(t) = a\delta \int_{t}^{T} B(s) ds + \rho \int_{t}^{T} \left[1 - \hat{h}(B(s)) \right] ds \tag{4}$$

Conditional Laplace Transform of λ_T

Theorem

The conditional Laplace transform of λ_T given λ_0 at time t=0, under condition $\delta > \mu_{1c}$, is given by

$$\mathbb{E}\left[e^{-\nu\lambda_{T}}|\lambda_{0}\right] = \exp\left(-\int_{\mathcal{G}_{\nu,1}^{-1}(T)}^{\nu} \frac{a\delta u + \rho[1-\hat{h}(u)]}{\delta u + \hat{g}(u) - 1} du\right) \times e^{-\mathcal{G}_{\nu,1}^{-1}(T) \cdot \lambda_{0}}$$
(5)

where the well defined (strictly decreasing) function

$$\mathcal{G}_{v,1}(L) =: \int_{L}^{v} \frac{\mathrm{d}u}{\delta u + \hat{g}(u) - 1}$$

$$\mu_{1_G} =: \int_0^\infty y dG(y); \quad \hat{g}(u) =: \int_0^\infty e^{-uy} dG(y); \quad \hat{h}(u) =: \int_0^\infty e^{-uy} dH(y)$$

Stationary Laplace Transform of λ_T

Let $T \to \infty$, then $\mathcal{G}_{v,1}^{-1}(T) \to 0$, we have

Theorem

The Laplace transform of **asymptotic distribution** of λ_T , under condition $\delta > \mu_{1_G}$, is given by

$$\lim_{T \to \infty} \mathbb{E}\left[e^{-\nu\lambda_T} \middle| \lambda_0\right] = \exp\left(-\int_0^\nu \frac{a\delta u + \rho[1 - \hat{h}(u)]}{\delta u + \hat{g}(u) - 1} du\right)$$
(6)

and this is also the Laplace transform of **stationary distribution** of process $\{\lambda_t\}_{t\geq 0}$.

Example

Externally excited and self-excited jumps follow exponential distributions with parameters α and β , explicitly,

$$\hat{h}(u) = \frac{\alpha}{\alpha + u}; \quad \hat{g}(u) = \frac{\beta}{\beta + u}$$
 (7)

Example

By identifying from Laplace transform, λ_T can be decomposed into two independent random variables plus constant a,

$$\lambda_{\mathcal{T}} \stackrel{\mathcal{D}}{=} \left\{ \begin{array}{ll} a + \tilde{\Gamma}_1 + \tilde{\Gamma}_2 & \quad \text{for } \alpha \geq \beta \\ a + \tilde{\Gamma}_3 + \tilde{B} & \quad \text{for } \alpha < \beta \text{ and } \alpha \neq \beta - \frac{1}{\delta} \\ a + \tilde{\Gamma}_4 + \tilde{P} & \quad \text{for } \alpha = \beta - \frac{1}{\delta} \end{array} \right.$$

where

$$\begin{split} \tilde{\Gamma}_1 \sim \text{Gamma}\left(\frac{1}{\delta}\left(a + \frac{\rho}{\delta(\alpha - \beta) + 1}\right), \frac{\delta\beta - 1}{\delta}\right); \\ \tilde{\Gamma}_2 \sim \text{Gamma}\left(\frac{\rho(\alpha - \beta)}{\delta(\alpha - \beta) + 1}, \alpha\right); \\ \tilde{\Gamma}_3 \sim \text{Gamma}\left(\frac{a + \rho}{\delta}, \frac{\delta\beta - 1}{\delta}\right); \quad \tilde{\Gamma}_4 \sim \text{Gamma}\left(\frac{a + \rho}{\delta}, \alpha\right); \end{split}$$

Example

$$\tilde{B} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{N_1} X_i^{(1)}, \quad N_1 \sim \text{NegBin}\left(\frac{\rho}{\delta} \frac{\beta - \alpha}{\gamma_1 - \gamma_2}, \frac{\gamma_2}{\gamma_1}\right), X_i^{(1)} \sim \text{Exp}(\gamma_1);$$

$$\tilde{P} \stackrel{\mathcal{D}}{=} \sum_{i=1}^{N_2} X_i^{(2)}, \quad N_2 \sim \text{Poisson}\left(\frac{\rho}{\delta^2 \alpha}\right), X_i^{(2)} \sim \text{Exp}\left(\alpha\right)$$

and $\gamma_1 = \max\left\{\alpha, \frac{\delta\beta-1}{\delta}\right\}$, $\gamma_2 = \min\left\{\alpha, \frac{\delta\beta-1}{\delta}\right\}$; \tilde{B} follows a compound negative binomial distribution with underlying exponential jumps; \tilde{P} follows a compound Poisson distribution with underlying exponential jumps.

Example

Special cases:

• Dassios and Jang (2003): $\beta = \infty$

$$\lambda_T \stackrel{\mathcal{D}}{=} a + \tilde{\Gamma}_5, \qquad \tilde{\Gamma}_5 \sim \text{Gamma}\left(\frac{\rho}{\delta}, \alpha\right)$$

• Hawkes process (1971): $\alpha = \infty$, or $\rho = 0$

$$\lambda_T \stackrel{\mathcal{D}}{=} a + \tilde{\Gamma}_6, \qquad \tilde{\Gamma}_6 \sim \text{Gamma}\left(\frac{a}{\delta}, \frac{\delta\beta - 1}{\delta}\right)$$

Probability Generating Function of N_T

Theorem

The conditional probability generating function of N_T given λ_0 and $N_0=0$ at time t=0, under condition $\delta>\mu_{1_G}$, is given by

$$\mathbb{E}\left[\theta^{N_T}\big|\lambda_0\right] = \exp\left(-\int_0^{\mathcal{G}_{0,\theta}^{-1}(T)} \frac{a\delta u + \rho[1-\hat{h}(u)]}{1-\delta u - \theta \cdot \hat{g}(u)} \mathrm{d}u\right) \times e^{-\mathcal{G}_{0,\theta}^{-1}(T) \cdot \lambda_0}$$

where the well defined (strictly increasing) function

$$\mathcal{G}_{0,\theta}(L) =: \int_0^L \frac{\mathrm{d}u}{1 - \delta u - \theta \cdot \hat{g}(u)} \qquad 0 \le \theta < 1$$

An Application in Credit Risk

- default is caused by a series of "bad events" released from the underlying company;
- each bad event can result to default with probability d;
- d measures the capability to avoid bankruptcy (e.g. credit ratings);
- the conditional **survival probability** at time *T* is

$$p_s(T) = \mathbb{E}\left[(1-d)^{N_T} |\lambda_0| \right]$$

• set the parameters $(a, \rho, \delta; \alpha, \beta; \lambda_0) = (0.7, 0.5, 2.0; 2.0, 1.5; 0.7)$.

Table: Survival Probability $p_s(T)$

Time T	1	2	3	4	5	6
d = 2%	98.15%	95.92%	93.65%	91.40%	89.21%	87.06%
<i>d</i> = 10%	91.26%	81.78%	72.99%	65.07%	58.01%	51.70%
d=20%	83.66%	67.91%	54.78%	44.13%	35.54%	28.63%
<i>d</i> = 100%	46.73%	21.10%	9.48%	4.26%	1.92%	0.86%

An Application to Credit Risk

Survival Probability

An Application to Credit Risk

Comparison for Survival Probabilities under Three Processes

An Application to Ruin Theory

Surplus Process

The claim arrivals are modelled by dynamic contagion process (N_t, λ_t) , i.e. for surplus process X_t ,

$$X_t = X_0 + ct - \sum_{i=1}^{N_t} Z_i \qquad (t \ge 0)$$
 (8)

where

- $X_0 = x \ge 0$ is the initial reserve at time t = 0;
- N_t is the dynamic contagion process ($N_0 = 0$) counting the number of claims arriving in the time interval (0, t], with intensity process λ_t , given $\lambda_0 = \lambda > 0$;
- $\{Z_i\}_{i=1,2,...}$ is a sequence of *i.i.d.* positive random variables (claim sizes) with distribution Z(z), z > 0, and independent of N_t .

An Application to Ruin Theory

Ruin Probability

The *stopping time* τ^* is the first time of ruin for X_t ,

$$\tau^* =: \left\{ \begin{array}{l} \inf \left\{ t > 0 \middle| X_t \le 0 \right\} \\ \inf \left\{ \varnothing \right\} = \infty \end{array} \right. \quad \text{if } X_t > 0 \text{ for all } t.$$

We are interested in the *ruin probability* in finite time,

$$\phi(\mathbf{x},\lambda,t) =: P\left\{\tau^* < t \middle| X_0 = \mathbf{x}, \lambda_0 = \lambda\right\};$$

particularly, the *ultimate ruin probability* in infinite time,

$$\phi(\mathbf{X},\lambda) =: P\left\{\tau^* < \infty \middle| X_0 = \mathbf{X}, \lambda_0 = \lambda\right\};$$

and also when the intensity process λ_t is stationary,

$$\phi(\mathbf{X}) =: P\left\{\tau^* < \mathbf{\infty} \middle| X_0 = \mathbf{X}, \lambda_0 = \mathbf{\lambda} \sim \mathbf{\Pi}\right\}.$$

Ruin by Simulation

Ruin by Simulation

Net Profit Condition

Theorem

If the claim arrivals of the surplus process X_t is driven by *dynamic* contagion process (N_t, λ_t) , under condition $\delta > \mu_{1_G}$, then, we have **net profit condition**

$$c > \frac{\mu_{1_H} \rho + a\delta}{\delta - \mu_{1_G}} \cdot \mu_{1_Z} \qquad (\delta > \mu_{1_G}), \qquad (9)$$

where

$$\mu_{1_Z} =: \int_0^\infty z \mathrm{d}Z(z).$$

If net profit condition holds, then ruin in infinite is not certain, i.e.

$$\lim_{t\to\infty} X_t = \infty \quad \text{or,} \quad P\left\{\tau^* < \infty\right\} < 1$$

Martingales and Generalised Lundberg's Fundamental Equation

Theorem

Under $\delta > \mu_{1_G}$ and net profit condition,

$$e^{-\mathbf{v}_{\mathbf{r}}X_{t}}e^{\eta_{\mathbf{r}}\lambda_{t}}e^{-\mathbf{r}t} \quad (\mathbf{r} \geq 0) \tag{10}$$

is a **martingale**, where constants $r \ge 0$, v_r and η_r satisfy a *generalized* Lundberg's Fundamental Equation

$$\begin{cases} \delta \xi_r + \hat{z}(-\mathbf{v}_r)\hat{g}(-\eta_r) - 1 = 0 & (.1) \\ \rho \left(\hat{h}(-\eta_r) - 1\right) - r + a\delta\eta_r - c\mathbf{v}_r = 0 & (.2) \end{cases}$$
(11)

where

$$\hat{z}(u) =: \int_0^\infty e^{-uz} dz(z).$$

Martingales and Generalised Lundberg's Fundamental Equation

Theorem

- For $0 \le r < \overline{r}$, we have unique solution $(v_r^+ > 0, \eta_r^+ > 0)$;
- for r = 0, unique solution $(v_0^+ > 0, \eta_0^+ > 0)$, where

$$\overline{r} = \rho \left(\hat{h}(-\overline{\eta}) - 1 \right) + a\delta \overline{\eta},$$
 (12)

and the constant $\bar{\eta}$ is the unique positive solution to

$$1 + \delta \eta_r = \hat{g}(-\eta_r) \qquad (\delta > \mu_{1_G}). \tag{13}$$

Change of Measure $\mathbb{P} \to \widetilde{\mathbb{P}}$

Theorem

We use the unique martingale $e^{-v_0^+ X_t} e^{\eta_0^+ \lambda_t}$ to define an **equivalent probability measure** $\widetilde{\mathbb{P}}$ via the *Radon-Nikodym derivative*

$$\frac{\mathrm{d}\widetilde{\mathbb{P}}}{\mathrm{d}\mathbb{P}} =: e^{-v_0^+(X_t - x)} e^{\eta_0^+(\lambda_t - \lambda)} \tag{14}$$

with $\mathbb{P} \to \widetilde{\mathbb{P}}$ parameter transformation by

- $c \rightarrow c$, $\delta \rightarrow \delta$,
 - $a \nearrow (1 + \delta \eta_0^+) a$,
 - $\bullet \ \rho \nearrow \hat{h}(-\eta_0^+)\rho,$
 - $Z(z) \rightarrow \widetilde{Z}(z)$,
 - $\bullet \ g(u) \to \frac{\widetilde{g}\left(\frac{u}{1+\delta\eta_0^+}\right)}{1+\delta\eta_0^+}, \ h(u) \to \frac{\widetilde{h}\left(\frac{u}{1+\delta\eta_0^+}\right)}{1+\delta\eta_0^+}.$

Net Profit Condition under $\widetilde{\mathbb{P}}$

Theorem

If the net profit condition and the stationarity condition both hold under original measure \mathbb{P} , i.e.

$$c > \frac{\mu_{1_H}\rho + a\delta}{\delta - \mu_{1_G}} \cdot \mu_{1_Z}, \quad \delta > \mu_{1_G}, \tag{15}$$

and the stationarity condition also holds under new measure $\widetilde{\mathbb{P}}$, i.e. $\widetilde{\delta} > \mu_{1_{\widetilde{o}}}$, then, under measure $\widetilde{\mathbb{P}}$, we have

$$\frac{\mu_{1_{\widetilde{H}}}\widetilde{\rho} + \widetilde{a}\widetilde{\delta}}{\widetilde{\delta} - \mu_{1_{\widetilde{G}}}} \cdot \mu_{1_{\widetilde{Z}}} > \widetilde{c}, \tag{16}$$

and ruin becomes certain (almost surely), i.e.

$$\widetilde{\mathbb{P}}\left\{\tau^* < \infty\right\} =: \lim_{t \to \infty} \widetilde{\mathbb{P}}\left\{\tau^* \le t\right\} = 1. \tag{17}$$

Ruin Probability under $\widetilde{\mathbb{P}}$

Theorem

Assume the net profit condition holds under \mathbb{P} , and the stationarity condition holds under \mathbb{P} and $\widetilde{\mathbb{P}}$, then

$$P\left\{\tau^* < \infty \middle| X_0 = X, \lambda_0 = \lambda\right\}$$

$$= e^{-v_0^+ x} e^{m\widetilde{\lambda}} \cdot \widetilde{\mathbb{E}} \left[\frac{\Psi\left(X_{\tau_-^*}\right)}{\hat{g}(-\eta_0^+)} \middle| X_0 = X, \widetilde{\lambda}_0 = \widetilde{\lambda} \right]$$
(18)

where
$$\underline{m} = \frac{\eta_0^+}{\delta \eta_0^+ + 1}$$
, $\widetilde{\lambda} = (1 + \delta \eta_0^+)\lambda$,

$$\Psi(x) =: \frac{\bar{Z}(x)e^{v_0^+ x}}{\int_x^\infty e^{v_0^+ z} \mathrm{d}Z(z)}.$$
 (19)

Generalization: Discretised Dynamic Contagion Process

The discretised dynamic contagion process $\{(N_t, M_t)\}_{t\geq 0}$ is a point process on \mathbb{R}_+ such that

$$P \{ M_{t+\Delta t} - M_t = k, N_{t+\Delta t} - N_t = 0 | M_t, N_t \}$$

$$= \rho p_k \Delta t + o(\Delta t), \quad k = 1, 2...,$$

$$P \{ M_{t+\Delta t} - M_t = k - 1, N_{t+\Delta t} - N_t = 1 | M_t, N_t \}$$

$$= \delta M_t q_k \Delta t + o(\Delta t), \quad k = 0, 1...,$$

$$P \{ M_{t+\Delta t} - M_t = 0, N_{t+\Delta t} - N_t = 0 | M_t, N_t \}$$

$$= 1 - (\rho(1 - p_0) + \delta M_t) \Delta t + o(\Delta t),$$

$$P \{ \text{Others} | M_t, N_t \} = o(\Delta t),$$

where

- $\delta, \rho > 0$ are constants;
- independent jumps K_P and joint jumps K_Q are two types of jumps in process M_t , with probabilities given respectively by

$$p_k =: P\{K_P = k\}, \quad q_k =: P\{K_Q = k\}, \quad k = 0, 1....$$

Discretised Dynamic Contagion Process

We could use it to model the interim payments (claims) in insurance, if we assume

- N_t is the number of cumulative settled claims within [0, t];
- M_t is denoted as the number of cumulative unsettled claims [0, t];
- the arrival of clusters of claims follow a Poisson process of rate ρ ;
- there are random number K_P of claims with probability p_k occurring simultaneously at each cluster;
- each of the claims will be settled with exponential delay of rate δ ;
- at each of the settlement times, only one claim can be settled, however, a random number K_Q of new claims with probability q_k could be revealed and need further settlement.

Discretised Dynamic Contagion Process

Theorem

The discretised dynamic contagion process is a zero-reversion dynamic contagion process, if

$$egin{aligned} extit{K}_P &\sim extit{Mixed-Poisson}\left(rac{Y}{\delta}\middle|Y\sim H
ight), \ extit{K}_Q &\sim extit{Mixed-Poisson}\left(rac{Y}{\delta}\middle|Y\sim G
ight), \end{aligned}$$

i.e.

$$p_k = \int_0^\infty \frac{e^{-\frac{y}{\delta}}}{k!} \left(\frac{y}{\delta}\right)^k dH(y), \quad q_k = \int_0^\infty \frac{e^{-\frac{y}{\delta}}}{k!} \left(\frac{y}{\delta}\right)^k dG(y).$$

A Special Case: A Risk Model with Delayed Claims

Consider a surplus process $\{X_t\}_{t\geq 0}$,

$$X_t = x + ct - \sum_{i=1}^{N_t} Z_i, \quad t \ge 0,$$

where

- $x = X_0 \ge 0$ is the initial reserve at time t = 0;
- c > 0 is the constant rate of premium payment per time unit;
- N_t is the number of cumulative settled claims within [0, t];
- $\{Z_i\}_{i=1,2,...}$ is a sequence of i.i.d. r.v. with the cumulative distribution Z(z), z>0, the mean and tail of Z are denoted respectively by

$$\mu_{1_Z} = \int_0^\infty z dZ(z), \quad \overline{Z}(x) = \int_x^\infty dZ(s).$$

- Assume the arrival of claims follows a Poisson process of rate ρ , and each of the claims will be settled with a random delay.
- Loss only occurs when claims are being settled.
- M_t is denoted as the number of cumulative unsettled claims within the time interval [0, t] and assume the initial number $M_0 = 0$.
- $\{T_k\}_{k=1,2,\dots}$, $\{L_k\}_{k=1,2,\dots}$ and $\{T_k+L_k\}_{k=1,2,\dots}$ are denoted as the (random) times of claim arrival, delay and settlement, respectively, and hence,

$$M_t = \sum_k \left(\mathbb{I}\left\{ T_k \leq t \right\} - \mathbb{I}\left\{ T_k + L_k \leq t \right\} \right), \quad N_t = \sum_k \mathbb{I}\left\{ T_k + L_k \leq t \right\}.$$

By Mirasol (1963), a delayed (or displaced) Poisson process is still a (non-homogeneous) Poisson process.

It is a special case of discretised dynamic contagion process if L is exponentially distributed.

The ruin (stopping) time after time $t \ge 0$ is defined by

$$\tau_t^* =: \left\{ \begin{array}{l} \inf\left\{ \boldsymbol{s}: \boldsymbol{s} > t, X_{\boldsymbol{s}} \leq 0 \right\}, \\ \inf\left\{\varnothing\right\} = \infty, & \text{if } X_{\boldsymbol{s}} > 0 \text{ for all } \boldsymbol{s}; \end{array} \right.$$

in particular, $\tau_t^* = \infty$ means ruin does not occur. We are interested in the ultimate ruin probability at time t, i.e.

$$\psi(\mathbf{x},t) =: P\left\{\tau_t^* < \infty \middle| X_t = \mathbf{x}\right\},\,$$

or, the ultimate non-ruin probability at time *t*, i.e.

$$\phi(\mathbf{x},t)=:\mathbf{1}-\psi(\mathbf{x},t).$$

Lemma

Assume $c > \rho \mu_{1_Z}$ and $L \sim \operatorname{Exp}(\delta)$, we have a series of modified Lundberg fundamental equations

$$cw - \rho [1 - \hat{z}(w)] - \delta j = 0, \quad j = 0, 1, ...;$$
 (20)

- for j = 0, (20) has solution zero and a unique negative solution (denoted by $W_0^+ = 0$ and $W_0^- < 0$);
- for j = 1, 2, ..., (20) has unique positive and negative solutions (denoted by $W_j^+ > 0$ and $W_j^- < 0$).

Denote the (modified) adjustment coefficients by $R_j=:-W_j^-, j=0,1,...;$ note that, $0< R_0< R_1< R_2<...< R_\infty,$ where $R_\infty=:\inf\big\{R\big|\hat{z}(-R)=\infty\big\}.$

Theorem

Assume $c > \rho \mu_{1_Z}$ and the first, second moments of L exist, we have the asymptotics of ruin probability

$$\psi(\mathbf{x},t) \sim e^{-cR_0 \int_t^\infty \overline{L}(s) \mathrm{d}s} \frac{c - \rho \mu_{1_Z}}{\rho \int_0^\infty z e^{R_0 z} \mathrm{d}Z(z) - c} e^{-R_0 x} + o\left(e^{-R_0 x}\right), \mathbf{x} \to \infty,$$

where
$$\overline{L}(t) =: 1 - L(t)$$
.

Theorem

Assume $c > \rho \mu_{1_Z}$ and $L \sim \operatorname{Exp}(\delta)$, we have the Laplace transform of non-ruin probability

$$\begin{split} \hat{\phi}(\boldsymbol{w},t) &= \\ &= e^{\vartheta e^{-\delta t}[1-\hat{z}(\boldsymbol{w})]} \bigg(\frac{c - \rho \mu_{1_Z}}{c\boldsymbol{w} - \rho \left[1 - \hat{z}(\boldsymbol{w})\right]} \\ &+ c \sum_{j=1}^{\infty} e^{-j\delta t} \frac{\sum_{\ell=0}^{j} r_{\ell} \frac{\vartheta \hat{z}(\boldsymbol{w})]^{j-\ell}}{(j-\ell)!}}{c\boldsymbol{w} - \rho \left[1 - \hat{z}(\boldsymbol{w})\right] - \delta j} \bigg), \end{split}$$

where $\vartheta = rac{
ho}{\delta}$,

$$r_0 = 1 - \frac{\rho}{c} \mu_{1_Z}, \quad r_\ell = -\sum_{i=0}^{\ell-1} \frac{\left[\vartheta \hat{z}(W_\ell^+)\right]^{\ell-i}}{(\ell-i)!} r_i, \quad \ell = 1, 2,$$

Theorem

Assume $c > \rho \mu_{1_Z}$ and $L \sim \operatorname{Exp}(\delta)$, we have the Laplace transform of the non-ruin probability

$$\hat{\phi}(\mathbf{w},t) = \sum_{j=0}^{\infty} \mathbf{e}^{-j\delta t} \hat{\phi}_j(\mathbf{w}),$$

where $\left\{\hat{\phi}_{j}(w)\right\}_{j=0,1,...}$ follow the recurrence

$$\hat{\phi}_{j}(w) = \rho \frac{\left[1 - \hat{z}(W_{j}^{+})\right] \hat{\phi}_{j-1}(W_{j}^{+}) - \left[1 - \hat{z}(w)\right] \hat{\phi}_{j-1}(w)}{cw - \rho \left[1 - \hat{z}(w)\right] - \delta j}, \quad j = 1, 2, ...,$$

$$\hat{\phi}_{0}(w) = \frac{c \left(1 - \frac{\rho}{c} \mu_{1_{z}}\right)}{cw - \rho \left[1 - \hat{z}(w)\right]}.$$

Theorem

Assume $c > \rho \mu_{1_Z}$, $L \sim \text{Exp}(\delta)$, the asymptotics of ruin probability is

$$\psi(\mathbf{x},t) \sim \sum_{j=0}^{\infty} \kappa_j(t) e^{-R_j \mathbf{x}}, \quad \mathbf{x} \to \infty,$$

$$\kappa_0(t) =: e^{-\frac{cR_0}{\rho}\vartheta e^{-\delta t}} \frac{c - \rho \mu_{1_Z}}{\rho \int_0^\infty z e^{R_0 z} dZ(z) - c},$$

$$\kappa_j(t) =: e^{-j\delta t} \frac{c e^{\vartheta e^{-\delta t} \left[1 - \hat{z}(-R_j)\right]}}{\rho \int_0^\infty z e^{R_j z} dZ(z) - c} \sum_{\ell=0}^j r_\ell \frac{\left[\vartheta \hat{z}(-R_j)\right]^{j-\ell}}{(j-\ell)!}, \quad j = 1, 2,$$

If Z follows an exponential distribution, we have

$$\psi(x,t) = \sum_{i=1}^{\infty} \kappa_{i}(t) e^{-R_{i}x}.$$

Reference

- DASSIOS, A., ZHAO, H. (2011). A Dynamic Contagion Process. *Advances in Applied Probability* **43(3)** 814-846.
- DASSIOS, A., ZHAO, H. (2012). Ruin by Dynamic Contagion Claims. *Insurance: Mathematics and Economics.* **51(1)** 93-106.
- DASSIOS, A., ZHAO, H. (2011). A Risk Model with Delayed Claims. To appear in *Journal of Applied Probability*.
- DASSIOS, A., ZHAO, H. (2012). A Markov Chain Model for Contagion. Submitted.
- DASSIOS, A., ZHAO, H. (2012). A Dynamic Contagion Process with Diffusion. Working paper.