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Background and Motivation

Default Contagion
One company’s default triggers a series of other companies’ default
through their network of business and financial links.

Financial Crisis
Recently, the behavior of default contagion is more obvious during
the current financial crisis, especially after the collapse of Lehman
Brothers in September 2008.

Models in Literature (Self Impact)
A point process with its intensity process dependent on the point
process itself could provide a more proper model to capture this
contagion phenomenon.

Jarrow and Yu (2001)
Errais, Giesecke and Goldberg (2009)
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Background and Motivation

Models in Literature (External Impact)
On the other hand, the default intensity could be impacted externally
by multiple common factors, such as sector or market-wide events.

Duffie and Gârleanu (2001)
Longstaff and Rajan (2008)

Our Methodology (Self + External Impact)
We combine both of ideas by introducing the dynamic contagion
process, a new point processes with both the externally excited and
self-excited dependence structure.

Hawkes (1971): Hawkes process (with exponential decay)
Dassios and Jang (2003): Cox process with shot noise intensity
Lando (1998): model the intensity of credit rating changing with
Cox processes
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Dynamic Contagion Process

Graphic Illustration (Stochastic Intensity Representation)

externally excited jumps
{

Y (1),T (1)
}

(↓), self-excited jumps
{

Y (2),T (2)
}

(l)
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Dynamic Contagion Process

Mathematical Definition (Stochastic Intensity Representation)
The dynamic contagion process is a point process
Nt ≡

{
T (2)

k

}
k=1,2,...

, with non-negative Ft−stochastic intensity process

λt following the piecewise deterministic dynamics with positive jumps,

λt = a + (λ0 − a) e−δt

+
∑
i≥1

Y (1)
i e−δ(t−T (1)

i )I
{

T (1)
i ≤ t

}
+
∑
k≥1

Y (2)
k e−δ(t−T (2)

k )I
{

T (2)
k ≤ t

}
,

where
{Ft}t≥0 is a history of Nt , with respect to which {λt}t≥0 is adapted,
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Dynamic Contagion Process

Mathematical Definition (Stochastic Intensity Representation)
a ≥ 0 is the reversion level;
λ0 > 0 is the initial value of λt ;
δ > 0 is the constant rate of exponential decay;{

Y (1)
i

}
i=1,2,...

is a sequence of i.i.d. positive (externally excited)

jumps with distribution H(y), y > 0, at the corresponding random
times

{
T (1)

i

}
i=1,2,...

following a homogeneous Poisson process Mt

with constant intensity ρ > 0;{
Y (2)

k

}
k=1,2,...

is a sequence of i.i.d. positive (self-excited) jumps

with distribution G(y), y > 0, at the corresponding random times{
T (2)

k

}
k=1,2,...

;

The sequences
{

Y (1)
i

}
i=1,2,...

,
{

T (1)
i

}
i=1,2,...

and
{

Y (2)
k

}
k=1,2,...

are assumed to be independent of each other.
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Dynamic Contagion Process

Mathematical Definition (Cluster Process Representation)
The dynamic contagion process is a cluster point process D on R+:
The number of points in the time interval (0, t ] is defined by
Nt = ND(0,t]. The cluster centers of D are the particular points called
immigrants, the other points are called offspring.They have the
following structure:

The immigrants are distributed according to a Cox process A with
points {Dm}m=1,2,... ∈ (0,∞) and shot noise stochastic intensity
process

a + (λ0 − a) e−δt +
∑
i≥1

Y (1)
i e−δ(t−T (1)

i )I
{

T (1)
i ≤ t

}
,

Angelos Dassios, Hongbiao Zhao (LSE) A Dynamic Contagion Process 8 / 43



Dynamic Contagion Process

Mathematical Definition (Cluster Process Representation)
Each immigrant Dm generates a cluster Cm = CDm , which is the
random set formed by the points of generations 0,1,2, ... with the
following branching structure:
the immigrant Dm is said to be of generation 0. Given generations
0,1, ..., j in Cm, each point T (2) ∈ Cm of generation j generates a
Cox process on (T (2),∞) of offspring of generation j + 1 with the
stochastic intensity Y (2)e−δ(·−T (2)) where Y (2) is a positive
(self-excited) jump at time T (2) with distribution G, independent of
the points of generation 0,1, ..., j .
D consists of the union of all clusters, i.e.

D =
⋃

m=1,2,...

CDm .

Angelos Dassios, Hongbiao Zhao (LSE) A Dynamic Contagion Process 9 / 43



Dynamic Contagion Process

Mathematical Definition (Infinitesimal Generator Representation)
The infinitesimal generator of the dynamic contagion process
(λt ,Nt , t) acting on f (λ,n, t) within its domain Ω(A) is given by

Af (λ,n, t) =
∂f
∂t

+δ (a− λ)
∂f
∂λ

+ρ

(∫ ∞

0
f (λ+ y ,n, t)dH(y)− f (λ,n, t)

)

+ λ

(∫ ∞

0
f (λ+ y ,n + 1, t)dG(y)− f (λ,n, t)

)
(1)

where Ω(A) is the domain for the generator A such that f (λ,n, t) is
differentiable with respect to λ, t for all λ, n and t , and∣∣∣∣∫ ∞

0
f (λ+ y ,n, t)dH(y)− f (λ,n, t)

∣∣∣∣ <∞

∣∣∣∣∫ ∞

0
f (λ+ y ,n + 1, t)dG(y)− f (λ,n, t)

∣∣∣∣ <∞
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Joint Laplace Transform - Probability Generating Function of
(λT ,NT )

Lemma

For the constants 0 ≤ θ ≤ 1 and v ≥ 0, we have the conditional joint
Laplace transform - probability generating function for the intensity
process λt and the point process Nt ,

E
[
θ(NT−Nt ) · e−vλT

∣∣∣∣Ft

]
= e−

(
c(T )−c(t)

)
e−B(t)λt (2)

where B(t) is determined by the non-linear ODE

− B′(t) + δB(t) + θ · ĝ
(
B(t)

)
− 1 = 0 (3)

with boundary condition B(T ) = v. Then, c(T )− c(t) is determined by

c(T )− c(t) = aδ
∫ T

t
B(s)ds + ρ

∫ T

t

[
1− ĥ

(
B(s)

)]
ds (4)
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Conditional Laplace Transform of λT

Theorem

The conditional Laplace transform of λT given λ0 at time t = 0, under
condition δ > µ1G , is given by

E
[
e−vλT

∣∣λ0

]
= exp

(
−
∫ v

G−1
v,1(T )

aδu + ρ[1− ĥ(u)]

δu + ĝ(u)− 1
du

)
× e−G

−1
v,1(T )·λ0

(5)
where the well defined (strictly decreasing) function

Gv ,1(L) =:

∫ v

L

du
δu + ĝ(u)− 1

µ1G =:

∫ ∞

0
ydG(y); ĝ(u) =:

∫ ∞

0
e−uy dG(y); ĥ(u) =:

∫ ∞

0
e−uy dH(y)
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Stationary Laplace Transform of λT

Let T →∞, then G−1
v ,1(T ) → 0, we have

Theorem

The Laplace transform of asymptotic distribution of λT , under
condition δ > µ1G , is given by

lim
T→∞

E
[
e−vλT

∣∣λ0
]

= exp

(
−
∫ v

0

aδu + ρ[1− ĥ(u)]

δu + ĝ(u)− 1
du

)
(6)

and this is also the Laplace transform of stationary distribution of
process {λt}t≥0.
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Example: Jumps with Exponential Distributions

Example
Externally excited and self-excited jumps follow exponential
distributions with parameters α and β, explicitly,

ĥ(u) =
α

α+ u
; ĝ(u) =

β

β + u
(7)
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Example: Jumps with Exponential Distributions

Example
By identifying from Laplace transform, λT can be decomposed into two
independent random variables plus constant a,

λT
D
=


a + Γ̃1 + Γ̃2 for α ≥ β

a + Γ̃3 + B̃ for α < β and α 6= β − 1
δ

a + Γ̃4 + P̃ for α = β − 1
δ

where

Γ̃1 ∼ Gamma
(

1
δ

(
a +

ρ

δ(α− β) + 1

)
,
δβ − 1
δ

)
;

Γ̃2 ∼ Gamma
(

ρ(α− β)

δ(α− β) + 1
, α

)
;

Γ̃3 ∼ Gamma
(

a + ρ

δ
,
δβ − 1
δ

)
; Γ̃4 ∼ Gamma

(
a + ρ

δ
, α

)
;
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Example: Jumps with Exponential Distributions

Example

B̃ D
=

N1∑
i=1

X (1)
i , N1 ∼ NegBin

(
ρ

δ

β − α

γ1 − γ2
,
γ2

γ1

)
,X (1)

i ∼ Exp(γ1);

P̃ D
=

N2∑
i=1

X (2)
i , N2 ∼ Poisson

( ρ

δ2α

)
,X (2)

i ∼ Exp (α)

and γ1 = max
{
α, δβ−1

δ

}
, γ2 = min

{
α, δβ−1

δ

}
; B̃ follows a compound

negative binomial distribution with underlying exponential jumps; P̃
follows a compound Poisson distribution with underlying exponential
jumps.
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Example: Jumps with Exponential Distributions

Example
Special cases:

Dassios and Jang (2003): β = ∞

λT
D
= a + Γ̃5, Γ̃5 ∼ Gamma

(ρ
δ
, α
)

Hawkes process (1971): α = ∞, or ρ = 0

λT
D
= a + Γ̃6, Γ̃6 ∼ Gamma

(
a
δ
,
δβ − 1
δ

)
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Probability Generating Function of NT

Theorem

The conditional probability generating function of NT given λ0 and
N0 = 0 at time t = 0, under condition δ > µ1G , is given by

E
[
θNT
∣∣λ0
]

= exp

(
−
∫ G−1

0,θ(T )

0

aδu + ρ[1− ĥ(u)]

1− δu − θ · ĝ(u)
du

)
× e−G

−1
0,θ(T )·λ0

where the well defined (strictly increasing) function

G0,θ(L) =:

∫ L

0

du
1− δu − θ · ĝ(u)

0 ≤ θ < 1
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An Application in Credit Risk

default is caused by a series of "bad events" released from the
underlying company;
each bad event can result to default with probability d ;
d measures the capability to avoid bankruptcy (e.g. credit ratings);
the conditional survival probability at time T is

ps(T ) = E
[
(1− d)NT

∣∣λ0

]
set the parameters (a, ρ, δ;α, β;λ0) = (0.7,0.5,2.0; 2.0,1.5; 0.7).

Table: Survival Probability ps(T )

Time T 1 2 3 4 5 6
d = 2% 98.15% 95.92% 93.65% 91.40% 89.21% 87.06%
d = 10% 91.26% 81.78% 72.99% 65.07% 58.01% 51.70%
d = 20% 83.66% 67.91% 54.78% 44.13% 35.54% 28.63%

d = 100% 46.73% 21.10% 9.48% 4.26% 1.92% 0.86%
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An Application to Credit Risk

Survival Probability
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An Application to Credit Risk

Comparison for Survival Probabilities under Three Processes
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An Application to Ruin Theory

Surplus Process
The claim arrivals are modelled by dynamic contagion process (Nt , λt),
i.e. for surplus process Xt ,

Xt = X0 + ct −
Nt∑

i=1

Zi (t ≥ 0) (8)

where
X0 = x ≥ 0 is the initial reserve at time t = 0;
c > 0 is the constant rate of premium payment per time unit;
Nt is the dynamic contagion process (N0 = 0) counting the
number of claims arriving in the time interval (0, t ], with intensity
process λt , given λ0 = λ > 0;{

Zi
}

i=1,2,...
is a sequence of i.i.d. positive random variables (claim

sizes) with distribution Z (z), z > 0, and independent of Nt .
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An Application to Ruin Theory

Ruin Probability
The stopping time τ∗ is the first time of ruin for Xt ,

τ∗ =:

{
inf
{

t > 0
∣∣Xt ≤ 0

}
inf {∅} = ∞ if Xt > 0 for all t .

We are interested in the ruin probability in finite time,

φ(x , λ, t) =: P
{
τ∗ < t

∣∣X0 = x , λ0 = λ
}

;

particularly, the ultimate ruin probability in infinite time,

φ(x , λ) =: P
{
τ∗ <∞

∣∣X0 = x , λ0 = λ
}

;

and also when the intensity process λt is stationary,

φ(x) =: P
{
τ∗ <∞

∣∣X0 = x , λ0 = λ ∼ Π
}
.
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Ruin by Simulation

One Simulated Sample Path (with Ruin)
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Ruin by Simulation

P
{
τ∗ < t

∣∣X0 = x , λ0 = λ
}

and E
[
τ∗ < t

∣∣X0 = x , λ0 = λ
]
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Net Profit Condition

Theorem
If the claim arrivals of the surplus process Xt is driven by dynamic
contagion process (Nt , λt), under condition δ > µ1G , then, we have net
profit condition

c >
µ1Hρ+ aδ
δ − µ1G

· µ1Z

(
δ > µ1G

)
, (9)

where
µ1Z =:

∫ ∞

0
zdZ (z).

If net profit condition holds, then ruin in infinite is not certain, i.e.

lim
t→∞

Xt = ∞ or, P {τ∗ <∞} < 1
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Martingales and Generalised Lundberg’s Fundamental Equation

Theorem
Under δ > µ1G and net profit condition,

e−vr Xt eηr λt e−r t (r ≥ 0) (10)

is a martingale, where constants r ≥ 0, vr and ηr satisfy a generalized
Lundberg’s Fundamental Equation{

δξr + ẑ(−vr )ĝ(−ηr )− 1 = 0 (.1)

ρ
(

ĥ(−ηr )− 1
)
− r + aδηr − cvr = 0 (.2)

(11)

where
ẑ(u) =:

∫ ∞

0
e−uzdz(z).

Angelos Dassios, Hongbiao Zhao (LSE) A Dynamic Contagion Process 27 / 43



Martingales and Generalised Lundberg’s Fundamental Equation

Theorem

For 0 ≤ r < r̄ , we have unique solution
(
v+

r > 0, η+
r > 0

)
;

for r = 0, unique solution
(
v+

0 > 0, η+
0 > 0

)
,

where
r̄ = ρ

(
ĥ(−η̄)− 1

)
+ aδη̄, (12)

and the constant η̄ is the unique positive solution to

1 + δηr = ĝ(−ηr )
(
δ > µ1G

)
. (13)
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Change of Measure P → P̃

Theorem

We use the unique martingale e−v+
0 Xt eη+

0 λt to define an equivalent
probability measure P̃ via the Radon-Nikodym derivative

dP̃
dP

=: e−v+
0 (Xt−x)eη+

0 (λt−λ) (14)

with P → P̃ parameter transformation by
c → c, δ → δ,
a ↗

(
1 + δη+

0

)
a,

ρ↗ ĥ(−η+
0 )ρ,

Z (z) → Z̃ (z),

g(u) →
g̃
(

u
1+δη+

0

)
1+δη+

0
, h(u) →

h̃
(

u
1+δη+

0

)
1+δη+

0
.
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Net Profit Condition under P̃

Theorem
If the net profit condition and the stationarity condition both hold under
original measure P, i.e.

c >
µ1Hρ+ aδ
δ − µ1G

· µ1Z , δ > µ1G , (15)

and the stationarity condition also holds under new measure P̃, i.e.
δ̃ > µ1G̃

, then, under measure P̃, we have

µ1H̃
ρ̃+ ãδ̃

δ̃ − µ1G̃

· µ1Z̃
> c̃, (16)

and ruin becomes certain (almost surely ), i.e.

P̃ {τ∗ <∞} =: lim
t→∞

P̃ {τ∗ ≤ t} = 1. (17)
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Ruin Probability under P̃

Theorem
Assume the net profit condition holds under P, and the stationarity
condition holds under P and P̃, then

P
{
τ∗ <∞

∣∣∣∣X0 = x , λ0 = λ

}

= e−v+
0 xemλ̃ · Ẽ

Ψ
(

Xτ∗−

) e
−mλ̃τ∗−

ĝ(−η+
0 )

∣∣∣∣∣X0 = x , λ̃0 = λ̃

 (18)

where m =
η+

0
δη+

0 +1 , λ̃ = (1 + δη+
0 )λ,

Ψ(x) =:
Z̄ (x)ev+

0 x∫∞
x ev+

0 zdZ (z)
. (19)
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Generalization: Discretised Dynamic Contagion Process

The discretised dynamic contagion process {(Nt ,Mt)}t≥0 is a point
process on R+ such that

P
{

Mt+∆t −Mt = k ,Nt+∆t − Nt = 0
∣∣Mt ,Nt

}
= ρpk∆t + o(∆t), k = 1,2...,

P
{

Mt+∆t −Mt = k − 1,Nt+∆t − Nt = 1
∣∣Mt ,Nt

}
= δMtqk∆t + o(∆t), k = 0,1...,

P
{

Mt+∆t −Mt = 0,Nt+∆t − Nt = 0
∣∣Mt ,Nt

}
= 1−

(
ρ(1− p0) + δMt

)
∆t + o(∆t),

P
{

Others
∣∣Mt ,Nt

}
= o(∆t),

where
δ, ρ > 0 are constants;
independent jumps KP and joint jumps KQ are two types of jumps
in process Mt , with probabilities given respectively by

pk =: P {KP = k} , qk =: P {KQ = k} , k = 0,1....
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Discretised Dynamic Contagion Process

We could use it to model the interim payments (claims) in insurance, if
we assume

Nt is the number of cumulative settled claims within [0, t ];
Mt is denoted as the number of cumulative unsettled claims [0, t ];
the arrival of clusters of claims follow a Poisson process of rate ρ;
there are random number KP of claims with probability pk
occurring simultaneously at each cluster;
each of the claims will be settled with exponential delay of rate δ;
at each of the settlement times, only one claim can be settled,
however, a random number KQ of new claims with probability qk
could be revealed and need further settlement.
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Discretised Dynamic Contagion Process

Theorem

The discretised dynamic contagion process is a zero-reversion
dynamic contagion process, if

KP ∼ Mixed–Poisson
(

Y
δ

∣∣∣∣Y ∼ H
)
,

KQ ∼ Mixed–Poisson
(

Y
δ

∣∣∣∣Y ∼ G
)
,

i.e.

pk =

∫ ∞

0

e−
y
δ

k !

(y
δ

)k
dH(y), qk =

∫ ∞

0

e−
y
δ

k !

(y
δ

)k
dG(y).
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A Special Case: A Risk Model with Delayed Claims

Consider a surplus process {Xt}t≥0,

Xt = x + ct −
Nt∑

i=1

Zi , t ≥ 0,

where
x = X0 ≥ 0 is the initial reserve at time t = 0;
c > 0 is the constant rate of premium payment per time unit;
Nt is the number of cumulative settled claims within [0, t ];
{Zi}i=1,2,... is a sequence of i.i.d. r.v. with the cumulative
distribution Z (z), z > 0, the mean and tail of Z are denoted
respectively by

µ1Z =

∫ ∞

0
zdZ (z), Z (x) =

∫ ∞

x
dZ (s).
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A Risk Model with Delayed Claims

Assume the arrival of claims follows a Poisson process of rate ρ,
and each of the claims will be settled with a random delay.
Loss only occurs when claims are being settled.
Mt is denoted as the number of cumulative unsettled claims within
the time interval [0, t ] and assume the initial number M0 = 0.{

Tk
}

k=1,2,...
,
{

Lk
}

k=1,2,...
and

{
Tk + Lk

}
k=1,2,...

are denoted as the
(random) times of claim arrival, delay and settlement, respectively,
and hence,

Mt =
∑

k

(
I {Tk ≤ t}−I {Tk + Lk ≤ t}

)
, Nt =

∑
k

I {Tk + Lk ≤ t} .

By Mirasol (1963), a delayed (or displaced) Poisson process is still a
(non-homogeneous) Poisson process.
It is a special case of discretised dynamic contagion process if L is
exponentially distributed.
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A Risk Model with Delayed Claims

The ruin (stopping) time after time t ≥ 0 is defined by

τ∗t =:

{
inf {s : s > t ,Xs ≤ 0} ,
inf {∅} = ∞, if Xs > 0 for all s;

in particular, τ∗t = ∞ means ruin does not occur. We are interested in
the ultimate ruin probability at time t , i.e.

ψ(x , t) =: P
{
τ∗t <∞

∣∣Xt = x
}
,

or, the ultimate non-ruin probability at time t , i.e.

φ(x , t) =: 1− ψ(x , t).
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A Risk Model with Delayed Claims

Lemma

Assume c > ρµ1Z and L ∼ Exp(δ), we have a series of modified
Lundberg fundamental equations

cw − ρ [1− ẑ(w)]− δj = 0, j = 0,1, ...; (20)

for j = 0, (20) has solution zero and a unique negative solution
(denoted by W +

0 = 0 and W−
0 < 0);

for j = 1,2, ..., (20) has unique positive and negative solutions
(denoted by W +

j > 0 and W−
j < 0).

Denote the (modified) adjustment coefficients by
Rj =: −W−

j , j = 0,1, ...; note that, 0 < R0 < R1 < R2 < ... < R∞,
where R∞ =: inf

{
R
∣∣ẑ(−R) = ∞

}
.
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A Risk Model with Delayed Claims

Theorem

Assume c > ρµ1Z and the first, second moments of L exist, we have
the asymptotics of ruin probability

ψ(x , t) ∼ e−cR0
∫∞

t L(s)ds c − ρµ1Z

ρ
∫∞

0 zeR0zdZ (z)− c
e−R0x+o

(
e−R0x

)
, x →∞,

where L(t) =: 1− L(t).

Angelos Dassios, Hongbiao Zhao (LSE) A Dynamic Contagion Process 39 / 43



A Risk Model with Delayed Claims

Theorem

Assume c > ρµ1Z and L ∼ Exp(δ), we have the Laplace transform of
non-ruin probability

φ̂(w , t) =

= eϑe−δt [1−ẑ(w)]

(
c − ρµ1Z

cw − ρ [1− ẑ(w)]

+c
∞∑

j=1

e−jδt

∑j
`=0 r`

[ϑẑ(w)]j−`

(j−`)!

cw − ρ [1− ẑ(w)]− δj

)
,

where ϑ = ρ
δ ,

r0 = 1− ρ

c
µ1Z , r` = −

`−1∑
i=0

[
ϑẑ(W +

` )
]`−i

(`− i)!
ri , ` = 1,2, ....
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A Risk Model with Delayed Claims

Theorem

Assume c > ρµ1Z and L ∼ Exp(δ), we have the Laplace transform of
the non-ruin probability

φ̂(w , t) =
∞∑

j=0

e−jδt φ̂j(w),

where
{
φ̂j(w)

}
j=0,1,...

follow the recurrence

φ̂j(w) = ρ

[
1− ẑ(W +

j )
]
φ̂j−1(W +

j )− [1− ẑ(w)] φ̂j−1(w)

cw − ρ [1− ẑ(w)]− δj
, j = 1,2, ...,

φ̂0(w) =
c
(
1− ρ

cµ1Z

)
cw − ρ [1− ẑ(w)]

.
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A Risk Model with Delayed Claims

Theorem

Assume c > ρµ1Z , L ∼ Exp(δ), the asymptotics of ruin probability is

ψ(x , t) ∼
∞∑

j=0

κj(t)e−Rj x , x →∞,

κ0(t) =: e−
cR0
ρ

ϑe−δt c − ρµ1Z

ρ
∫∞

0 zeR0zdZ (z)− c
,

κj(t) =: e−jδt ceϑe−δt [1−ẑ(−Rj )]

ρ
∫∞

0 zeRj zdZ (z)− c

j∑
`=0

r`

[
ϑẑ(−Rj)

]j−`

(j − `)!
, j = 1,2, ....

If Z follows an exponential distribution, we have

ψ(x , t) =
∞∑

j=0

κj(t)e−Rj x .
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