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Plan

• Motivation and challenges

• Danish males data

10 sub-populations grouped by wealth

• An extended CBD multi-population model

• Bayesian implementation and results
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Motivation for stochastic mortality modelling

• Life expectancy is increasing/mortality falling

⇒potential impact on

– pension plan finances; costs ↗
– life insurance premiums and reserves

• Past patterns ⇒ future improvements uncertain

• Need good stochastic models for

– central forecasts

– assessment of uncertainty around central trend

– development of risk management strategies
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Motivation for multi-population modelling

A: Risk assessment

• Multi-country (e.g. consistent demographic projections)

• Males/Females (e.g. consistent demographic projections)

• Socio-economic subgroups (e.g. blue or white collar)

• Smokers/Non-smokers

• Annuities/Life insurance

• Limited data ⇒ learn from other populations
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Motivation for two-population modelling
B: Risk management for pension plans and insurers

• Retain systematic mortality risk; versus:

• ‘Over-the-counter’ deals (e.g. longevity swap)

– own experience ⇒ 100% risk reduction

– potentially expensive

• Standardised mortality-linked securities

– linked to national mortality index

– < 100% risk reduction

– less expensive

– potential secondary market
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Two or more populations

• Linked in some way

• But not identical

• Desire for consistent forecasts

– distributions

– individual future scenarios
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Key hypothesis

•m(k)(t, x) = pop. k death rate in year t at age x

• Hypothesis (e.g. Li and Lee, 2005):

For each age x, and for any two populations j and k

m(j)(t, x)

m(k)(t, x)
does not diverge over time

• Hypothesis ⇒ Consequences depend on your choice

of stochastic mortality model
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Challenges

• Data availability

• Data quality and depth

• Model complexity

– single population models can be complex

– 2-population versions are more complex

– multi-pop ......

• Multi-population modelling requires

– (fairly) simple single-population models

– simple dependencies between populations
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A New Case Study and a New Model

• Sub-populations differ from national population

– socio-economic factors

– geographical variation

– other factors

• Denmark

– High quality data on ALL residents

– 1981-2005 available

– Can subdivide population using covariates on the

database
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Danish Data

• Key covariates

– Net assets

– Net income
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Problem

• High income ⇒ “wealthy” and healthy BUT

• Low income ⇒/ not wealthy, poor health

• High assets ⇒ “wealthy” and healthy BUT

• Low assets ⇒/ not wealthy, poor health

Solution: use a combination

• Wealth, W = assets +K× income

•K = 15 seems to work well statistically as a predictor

• Low wealth, W , predicts poor mortality
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Subdividing Data

• Males resident in Denmark for the previous 12 months

• Divide population in year t

– into 10 equal sized Groups (approx)

– using wealth in year t− 1

• Individuals can change groups up to age 67

• Group is locked down at age 67

(better than not locking down at age 67)
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Subdivided Data

• Exposures E(i)(t, x) for groups i = 1, . . . , 10

range from over 4000 down to 20

• Deaths D(i)(t, x)

range from 150 down to 6

• Crude death rates m̂(i)(t, x) = D(i)(t, x)/E(i)(t, x)

• Small groups ⇒ Poisson risk is important
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Crude death rates 2005
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Modelling the death rates, mk(t, x)

Population k, year t, age x

logm(k)(t, x) = β(k)(x) + κ
(k)
1 (t) + κ

(k)
2 (t)(x− x̄)

(Extended CBD with a non-parametric base table, β(k)(x))

• 10 groups, k = 1, . . . , 10 (low to high wealth)

• 21 years, t = 1985, . . . , 2005

• 40 ages, x = 55, . . . , 94
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Model-Inferred Underlying Death Rates 2005
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Modelling the death rates, mk(t, x)

logm(k)(t, x) = β(k)(x) + κ
(k)
1 (t) + κ

(k)
2 (t)(x− x̄)

• Model fits the 10 groups well without a cohort effect

• Non-parametric β(k)(x) is essential to preserve group

rankings

– Rankings are evident in crude data

– “Biological reasonableness”: wealthier ⇒ healthier
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Bayesian modelling

• Combines

– conditional Poisson likelihood

– time series likelihood for the κ
(k)
j (t)

– (uninformative) prior distributions for process

parameters

• Output posterior distribution for

– β(k)(x), κ
(k)
1 (t), κ

(k)
2 (t) latent state variables

– time series process parameters

18



Time series modelling

• t→ t + 1: Allow for correlation

– between κ
(k)
1 (t + 1) and κ

(k)
2 (t + 1)

– between groups k = 1, . . . , 10

• Biological reasonableness ⇒ key hypothesis

groups should not diverge

• Sufficient that we have mean reversion in

κ
(j)
1 (t)− κ

(k)
1 (t) and κ

(j)
2 (t)− κ

(k)
2 (t)
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A specific model

κ
(i)
1 (t) = κ

(i)
1 (t− 1) + µ1 + Z1i(t) (random walk)

−ψ
(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
(gravity between groups)

κ
(i)
2 (t) = κ

(i)
2 (t− 1) + µ2 + Z2i(t)

−ψ
(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
where

κ̄1(t) =
1

n

n∑
i=1

κ
(i)
1 (t) and κ̄2(t) =

1

n

n∑
i=1

κ
(i)
2 (t)
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A specific model

κ
(i)
1 (t) = κ

(i)
1 (t− 1) + µ1 + Z1i(t)− ψ

(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
κ
(i)
2 (t) = κ

(i)
2 (t− 1) + µ2 + Z2i(t)− ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
• (κ̄1(t), κ̄2(t)) ∼ bivariate random walk

• Each κ
(i)
1 (t)− κ̄1(t) ∼ AR(1) reverting to 0

• Each κ
(i)
2 (t)− κ̄2(t) ∼ AR(1) reverting to 0
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A specific model

κ
(i)
1 (t) = κ

(i)
1 (t− 1) + µ1+Z1i(t)− ψ

(
κ
(i)
1 (t− 1)− κ̄1(t− 1)

)
κ
(i)
2 (t) = κ

(i)
2 (t− 1) + µ2+Z2i(t)− ψ

(
κ
(i)
2 (t− 1)− κ̄2(t− 1)

)
The Zi,j are multivariate normal, mean 0 and

Cov(Zki, Zlj) =

 vkl for i = j

ρvkl for i ̸= j

ρ = cond. correlation between κ
(i)
1 (t) and κ

(j)
1 (t) etc.

22



Comments

• Model is very simple

– One gravity parameter, 0 < ψ < 1

– One between-group correlation parameter,

0 < ρ < 1

• Many generalisations are possible

• But more parameters + more complex computing

• This simple model seems to fit quite well.

• Nevertheless ⇒ work in progress
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Prior distributions

• As uninformative as possible

• µ1, µ2 ∼ improper uniform prior

• {vij} ∼ Inverse Wishart

• ρ ∼ Beta(2, 2)

• ψ ∼ Beta(2, 2)

State variables and process parameters estimated using

MCMC (Gibbs + Metropolis-Hastings)
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Posterior Distributions
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Posterior Distributions
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Life Expectancy for Groups 1 to 10
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Mortality Fan Charts Including Parameter Uncertainty
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Simulated Group versus Population Mortality
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As T increases

• Scatterplots become more dispersed

• Shift down and to the left

• Correlation increasess
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Forecast Correlations
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Conclusions

• Development of a new multi-population dataset for Denmark

strong biologically reasonable group rankings

• Unlike multi-country data

a priori ranking of wealth-related groups

• Proposal for a simple new multi-population model

• Next steps:

– Females data

– More general correlation and gravity structures
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