MULTI-POPULATION MORTALITY MODELLING

Andrew Cairns

Heriot-Watt University, Scotland

and

The Maxwell Institute, Edinburgh

Joint work with

David Blake, Kevin Dowd, Malene Kallestrup-Lamb and Carsten Rosenskjold

Plan

- Motivation and challenges
- Danish males data
 - 10 sub-populations grouped by wealth
- An extended CBD multi-population model
- Bayesian implementation and results

Motivation for stochastic mortality modelling

- Life expectancy is increasing/mortality falling
 - ⇒potential impact on
 - pension plan finances; costs
 - life insurance premiums and reserves
- Past patterns ⇒ future improvements uncertain
- Need good stochastic models for
 - central forecasts
 - assessment of uncertainty around central trend
 - development of risk management strategies

Motivation for multi-population modelling

A: Risk assessment

- Multi-country (e.g. consistent demographic projections)
- Males/Females (e.g. consistent demographic projections)
- Socio-economic subgroups (e.g. blue or white collar)
- Smokers/Non-smokers
- Annuities/Life insurance
- Limited data ⇒ learn from other populations

Motivation for two-population modelling

B: Risk management for pension plans and insurers

- Retain systematic mortality risk; versus:
- 'Over-the-counter' deals (e.g. longevity swap)
 - own experience ⇒ 100% risk reduction
 - potentially expensive
- Standardised mortality-linked securities
 - linked to national mortality index
 - < 100% risk reduction
 - less expensive
 - potential secondary market

Two or more populations

- Linked in some way
- But not identical
- Desire for consistent forecasts
 - distributions
 - individual future scenarios

Key hypothesis

- ullet $m^{(k)}(t,x)=$ pop. k death rate in year t at age x
- Hypothesis (e.g. Li and Lee, 2005):

For each age x, and for any two populations j and k

$$rac{m^{(j)}(t,x)}{m^{(k)}(t,x)}$$
 does not diverge over time

Hypothesis

Consequences depend on your choice of stochastic mortality model

Challenges

- Data availability
- Data quality and depth
- Model complexity
 - single population models can be complex
 - 2-population versions are more complex
 - multi-pop
- Multi-population modelling requires
 - (fairly) simple single-population models
 - simple dependencies between populations

A New Case Study and a New Model

- Sub-populations differ from national population
 - socio-economic factors
 - geographical variation
 - other factors
- Denmark
 - High quality data on ALL residents
 - 1981-2005 available
 - Can subdivide population using covariates on the database

Danish Data

- Key covariates
 - Net assets
 - Net income

Problem

- ◆ High income ⇒ "wealthy" and healthy BUT
- Low income

 → not wealthy, poor health
- ◆ High assets ⇒ "wealthy" and healthy BUT

Solution: use a combination

- ullet Wealth, W= assets $+K\times$ income
- \bullet K=15 seems to work well *statistically* as a predictor
- ullet Low wealth, W, predicts poor mortality

Subdividing Data

- Males resident in Denmark for the previous 12 months
- Divide population in year t
 - into 10 equal sized Groups (approx)
 - using wealth in year t-1
- Individuals can change groups up to age 67
- Group is locked down at age 67

(better than not locking down at age 67)

Subdivided Data

- \bullet Exposures $E^{(i)}(t,x)$ for groups $i=1,\dots,10$ range from over 4000 down to 20
- \bullet Deaths $D^{(i)}(t,x)$ range from 150 down to 6
- \bullet Crude death rates $\hat{m}^{(i)}(t,x) = D^{(i)}(t,x)/E^{(i)}(t,x)$
- Small groups ⇒ Poisson risk is important

Crude death rates 2005

Males Crude m(t,x); 2005



Modelling the death rates, $m_k(t,x)$

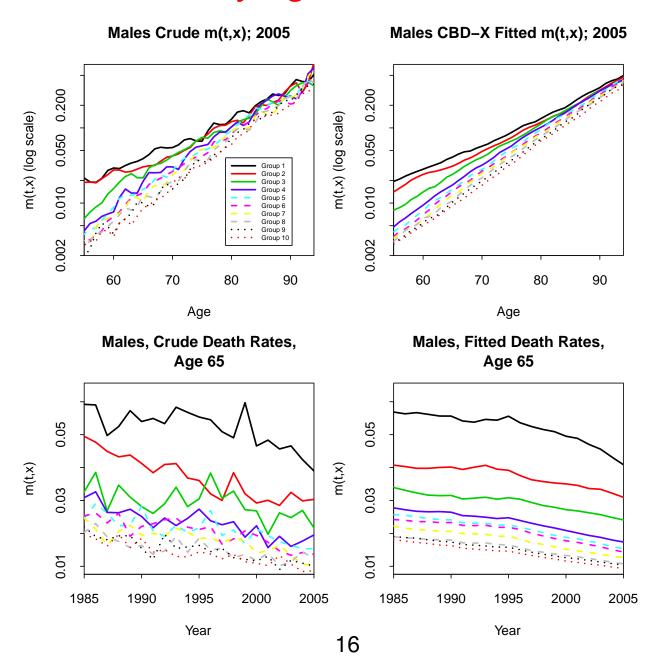
Population k, year t, age x

$$\log m^{(k)}(t,x) = \beta^{(k)}(x) + \kappa_1^{(k)}(t) + \kappa_2^{(k)}(t)(x - \bar{x})$$

(Extended CBD with a non-parametric base table, $\beta^{(k)}(x)$)

- 10 groups, $k=1,\ldots,10$ (low to high wealth)
- 21 years, $t = 1985, \dots, 2005$
- 40 ages, $x = 55, \dots, 94$

Model-Inferred Underlying Death Rates 2005



Modelling the death rates, $m_k(t,x)$

$$\log m^{(k)}(t,x) = \beta^{(k)}(x) + \kappa_1^{(k)}(t) + \kappa_2^{(k)}(t)(x - \bar{x})$$

- Model fits the 10 groups well without a cohort effect
- \bullet Non-parametric $\beta^{(k)}(x)$ is essential to preserve group rankings
 - Rankings are evident in crude data
 - "Biological reasonableness": wealthier \Rightarrow healthier

Bayesian modelling

- Combines
 - conditional Poisson likelihood
 - time series likelihood for the $\kappa_j^{(k)}(t)$
 - (uninformative) prior distributions for process parameters
- Output posterior distribution for
 - $\beta^{(k)}(x), \; \kappa_1^{(k)}(t), \; \kappa_2^{(k)}(t)$ latent state variables
 - time series process parameters

Time series modelling

- $t \rightarrow t + 1$: Allow for correlation
 - between $\kappa_1^{(k)}(t+1)$ and $\kappa_2^{(k)}(t+1)$
 - between groups $k = 1, \ldots, 10$
- Biological reasonableness ⇒ key hypothesis groups should not diverge
- Sufficient that we have mean reversion in

$$\kappa_1^{(j)}(t)-\kappa_1^{(k)}(t)$$
 and $\kappa_2^{(j)}(t)-\kappa_2^{(k)}(t)$

A specific model

$$\kappa_1^{(i)}(t) \; = \; \kappa_1^{(i)}(t-1) + \mu_1 + Z_{1i}(t) \qquad \text{(random walk)} \\ -\psi \left(\kappa_1^{(i)}(t-1) - \bar{\kappa}_1(t-1)\right) \qquad \text{(gravity between groups)} \\ \kappa_2^{(i)}(t) \; = \; \kappa_2^{(i)}(t-1) + \mu_2 + Z_{2i}(t) \\ -\psi \left(\kappa_2^{(i)}(t-1) - \bar{\kappa}_2(t-1)\right)$$

where

$$ar{\kappa}_1(t) = rac{1}{n} \sum_{i=1}^n \kappa_1^{(i)}(t)$$
 and $ar{\kappa}_2(t) = rac{1}{n} \sum_{i=1}^n \kappa_2^{(i)}(t)$

A specific model

$$\kappa_1^{(i)}(t) = \kappa_1^{(i)}(t-1) + \mu_1 + Z_{1i}(t) - \psi \left(\kappa_1^{(i)}(t-1) - \bar{\kappa}_1(t-1) \right)
\kappa_2^{(i)}(t) = \kappa_2^{(i)}(t-1) + \mu_2 + Z_{2i}(t) - \psi \left(\kappa_2^{(i)}(t-1) - \bar{\kappa}_2(t-1) \right)$$

- $(\bar{\kappa}_1(t), \bar{\kappa}_2(t)) \sim$ bivariate random walk
- \bullet Each $\kappa_1^{(i)}(t) \bar{\kappa}_1(t) \sim AR(1)$ reverting to 0
- \bullet Each $\kappa_2^{(i)}(t) \bar{\kappa}_2(t) \sim AR(1)$ reverting to 0

A specific model

$$\kappa_1^{(i)}(t) = \kappa_1^{(i)}(t-1) + \mu_1 + Z_{1i}(t) - \psi \left(\kappa_1^{(i)}(t-1) - \bar{\kappa}_1(t-1) \right)
\kappa_2^{(i)}(t) = \kappa_2^{(i)}(t-1) + \mu_2 + Z_{2i}(t) - \psi \left(\kappa_2^{(i)}(t-1) - \bar{\kappa}_2(t-1) \right)$$

The $Z_{i,j}$ are multivariate normal, mean 0 and

$$Cov(Z_{ki}, Z_{lj}) = \begin{cases} v_{kl} & \text{for } i = j \\ \rho v_{kl} & \text{for } i \neq j \end{cases}$$

 $\rho=$ cond. correlation between $\kappa_1^{(i)}(t)$ and $\kappa_1^{(j)}(t)$ etc.

Comments

- Model is very simple
 - One gravity parameter, $0<\psi<1$
 - One between-group correlation parameter,

$$0 < \rho < 1$$

- Many generalisations are possible
- But more parameters + more complex computing
- This simple model seems to fit quite well.
- Nevertheless ⇒ work in progress

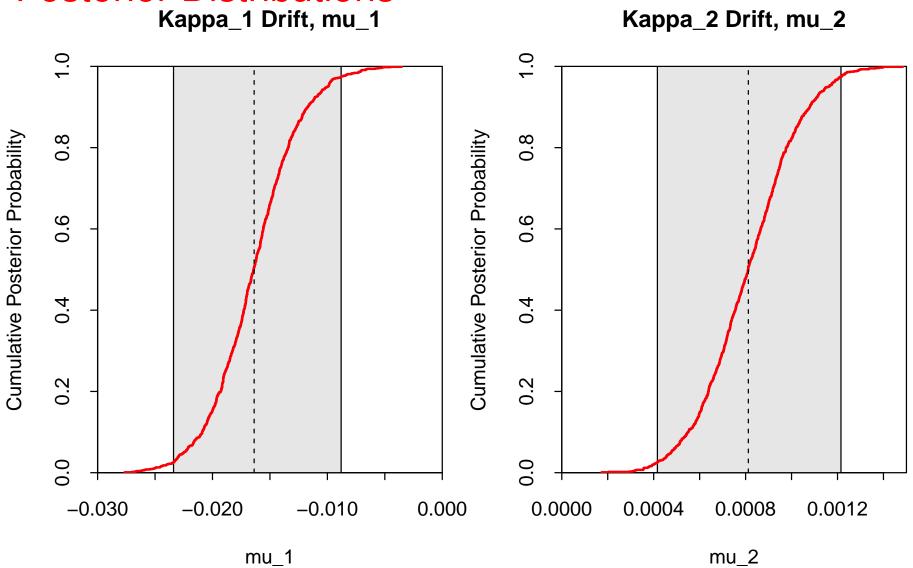
Prior distributions

- As uninformative as possible
- $\mu_1, \; \mu_2 \sim$ improper uniform prior
- $\{v_{ij}\}$ ~ Inverse Wishart
- $\bullet \ \rho \sim \text{Beta}(2,2)$
- $\bullet \ \psi \sim \mathrm{Beta}(2,2)$

State variables and process parameters estimated using

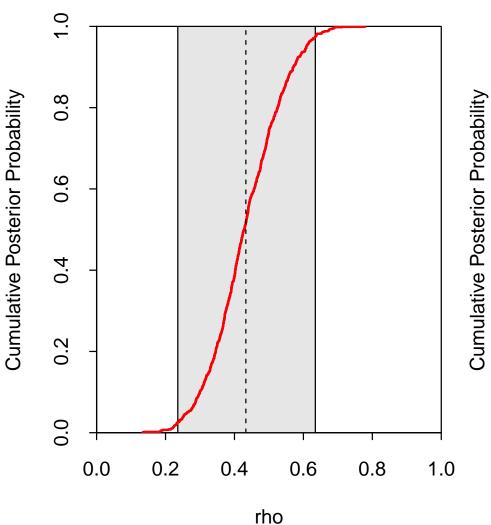
MCMC (Gibbs + Metropolis-Hastings)

Posterior Distributions

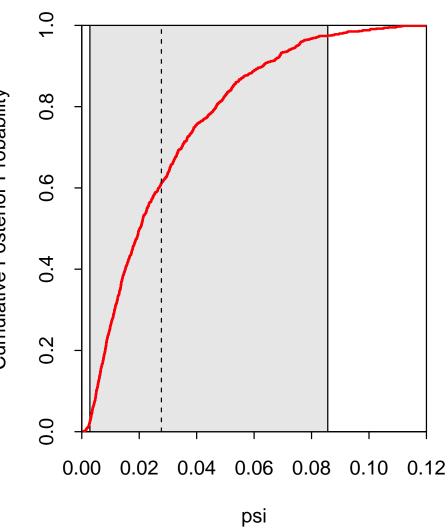


Posterior Distributions

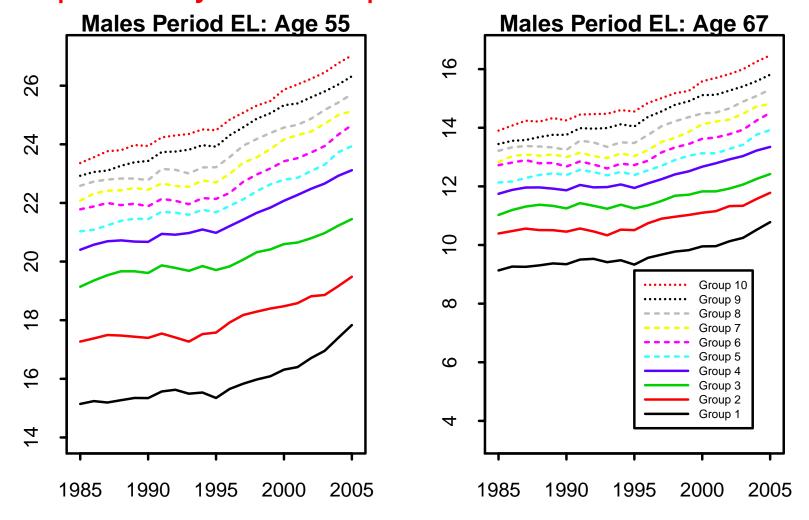
Between Group Correlation, rho



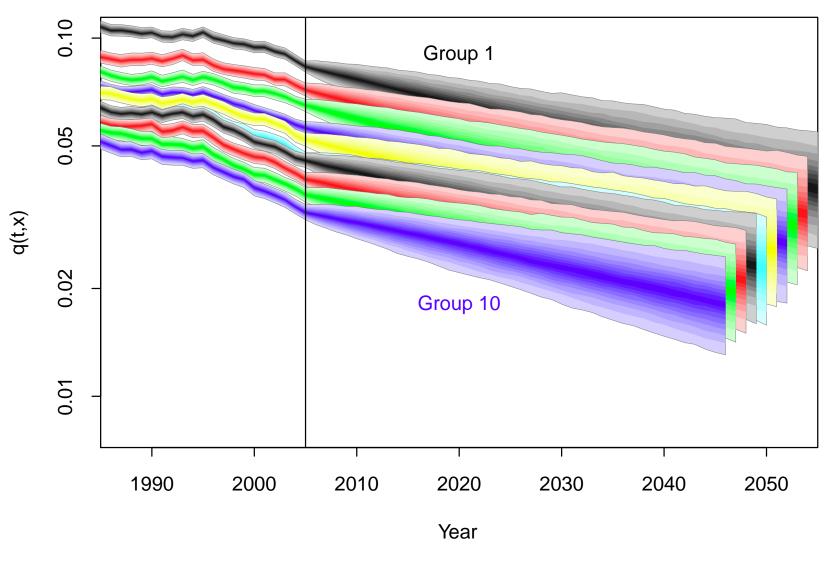
Gravity Parameter, psi



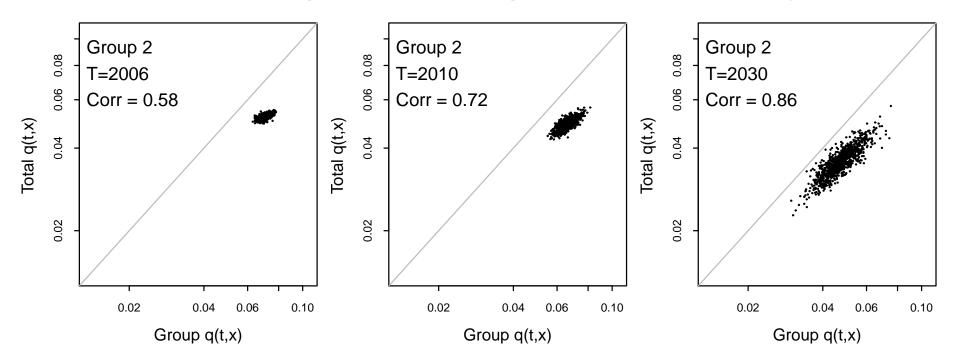
Life Expectancy for Groups 1 to 10



Mortality Fan Charts Including Parameter Uncertainty



Simulated Group versus Population Mortality

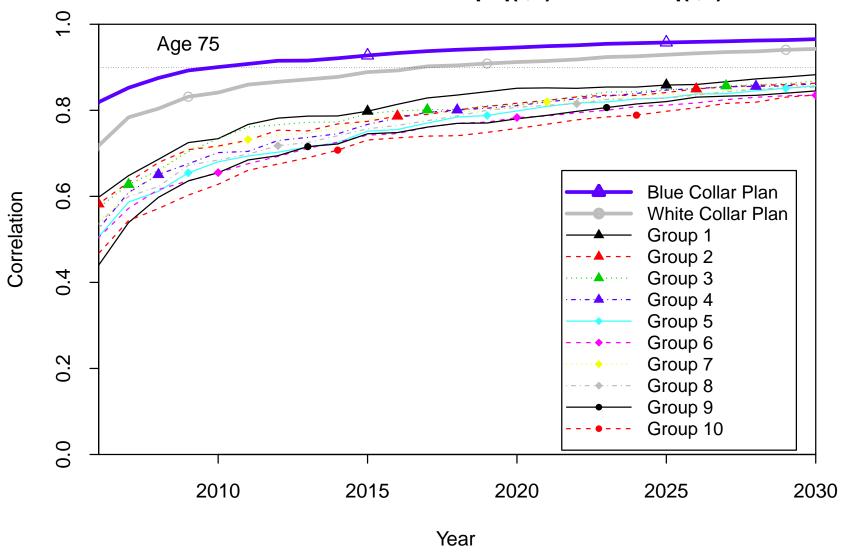


As T increases

- Scatterplots become more dispersed
- Shift down and to the left
- Correlation increasess

Forecast Correlations

Correlation Between Group q(t,x) and Total q(t,x)



Conclusions

- Development of a new multi-population dataset for Denmark strong biologically reasonable group rankings
- Unlike multi-country data
 a priori ranking of wealth-related groups
- Proposal for a simple new multi-population model
- Next steps:
 - Females data
 - More general correlation and gravity structures